
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2002

Studies of compressive forces on L5/S1 during
dynamic manual lifting
Iwan Budihardjo
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Industrial Engineering Commons, Medical Biophysics Commons, and the
Occupational Health and Industrial Hygiene Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Budihardjo, Iwan, "Studies of compressive forces on L5/S1 during dynamic manual lifting " (2002). Retrospective Theses and
Dissertations. 501.
https://lib.dr.iastate.edu/rtd/501

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F501&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F501&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F501&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F501&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F501&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F501&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=lib.dr.iastate.edu%2Frtd%2F501&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/668?utm_source=lib.dr.iastate.edu%2Frtd%2F501&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/742?utm_source=lib.dr.iastate.edu%2Frtd%2F501&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/501?utm_source=lib.dr.iastate.edu%2Frtd%2F501&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

INFORMATION TO USERS 

This manuscript has been reproduced from the microfilm master. UMI films 

the text directly from the original or copy submitted. Thus, some thesis and 

dissertation copies are in typewriter face, while others may be from any type of 

computer printer. 

The quality of this reproduction is dependent upon the quality of the 

copy submitted. Broken or indistinct print, colored or poor quality illustrations 

and photographs, print bleedthrough, substandard margins, and improper 

alignment can adversely affect reproduction. 

In the unlikely event that the author did not send UMI a complete manuscript 

and there are missing pages, these will be noted. Also, if unauthorized 

copyright material had to be removed, a note will indicate the deletion. 

Oversize materials (e.g., maps, drawings, charts) are reproduced by 

sectioning the original, beginning at the upper left-hand comer and continuing 

from left to right in equal sections with small overlaps. 

ProQuest Information and Learning 
300 North Zeeb Road, Ann Arbor, Mi 48106-1346 USA 

800-521-0600 



www.manaraa.com



www.manaraa.com

Studies of compressive forces on L5/S1 during dynamic manual lifting 

by 

Inan Budihardjo 

A dissertation submitted to the graduate faculty 

in partial fulfillment of the requirements for the degree of 

DOCTOR OF PHILOSOPHY 

Major: Industrial Engineering 

Program of Study Committee: 

Patrick Patterson. Co-major Professor 

Timothy Derrick. Co-major Professor 
Stephen Vardeman 

S. Keith Adams 
Timothy Van Voorhis 

Iowa State University 

Ames. Iowa 

2002 

Copyright £ I wan Budihardjo. 2002. All rights reserv ed. 



www.manaraa.com

UMI Number: 3073436 

UMI 
UMI Microform 3073436 

Copyright 2003 by ProQuest Information and Learning Company. 
All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code. 

ProQuest Information and Learning Company 
300 North Zeeb Road 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346 



www.manaraa.com

ii 

Graduate College 
Iowa State University 

This is to certify that the doctoral dissertation of 

I wan Budihardjo 

has met the dissertation requirements of Iowa State University 

Co-major Professor 

Co- jor Professor 

For the Major Program 

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.



www.manaraa.com

iii 

TABLE OF CONTENTS 

TABLE OF CONTENTS iii 
LIST OF FIGURES v 

LIST OF TABLES vi 
ACKNOWLEDGMENTS vii 
ABSTRACT viii 

CHAPTER 1: DEVELOPMENT OF THE PROBLEM I 

Introduction I 

Statement of the problem 4 

Limitations 5 
Assumptions 5 

CHAPTER 2: REVIEW OF LITERATURE 6 
Introduction 6 

Low back injuries 6 
Lifting tasks 7 

Techniques of lifting 8 
Biomechanical models 9 

Kinematics 12 
Kinetics 12 

Anthropometry 14 

Static and dynamics models 15 

Two-dimensional and three-dimensional dynamic models 16 
Muscular fatigue and electromyography (EMG) 17 
The effect of fatigue conditions 18 
The effect of previous lifts and the knowledge of load magnitude 19 
The effect of constraining barrier 21 

CHAPTER 3: INFLUENCE OF FATIGUE ON L5/S1 COMPRESSIVE FORCE DURING 
MANUAL LIFTING 22 

Abstract 22 
Introduction 23 

Methods 26 

Subjects 26 
Protocol 26 

Model 27 
Electromyography (EMG) 29 

Data analysis 30 

Results 31 

Discussion 32 

Conclusions 35 

References 37 

CHAPTER 4: INFLUENCE OF PREVIOUS LIFTS AND KNOWLEDGE OF LOAD MAGNITUDE 

ON L5/S1 COMPRESSIVE FORCE DURING MANUAL LIFTING 44 
Abstract 44 
Introduction 45 

Methods 48 
Subjects 48 

Protocol 48 



www.manaraa.com

i v  

Model 49 

Data analysis 50 
Results 51 

Discussion 53 

Conclusion 56 
References 58 

CHAPTER 5: INFLUENCE OF CONSTRAINING BARRIER ON L5/SI COMPRESSIVE FORCE 

DURING MANUAL LIFTING 66 
Abstract 66 
Introduction 67 
Methods 69 

Subjects 69 

Protocol 69 

Model 70 

Data analysis 71 

Results 71 

Discussion 72 
Conclusions 74 

References 75 
CHAPTER 6: CONCLUSIONS 79 

Research contributions and suggestions 79 
Future studies 83 

APPENDIX A: INFORMED CONSENT 84 

APPENDIX B: ANTHROPOMETRIC TABLE 94 
APPENDIX C: THE L5/S1 AND PELVIS MODELS 95 

APPENDIX D: MOTOR UNIT AND MUSCLE FIBER TYPES 99 
REFERENCES 101 



www.manaraa.com

V 

LIST OF FIGURES 

Figure 3.1: Example of peak compressive forces at L5/SI joint during pre fatigue condition 42 

Figure 3.2: The peak compressive forces at L5/S1 joint for all subjects between the pre and post 
fatigue conditions 43 

I i guru 4.1 : Peak compressive forces during the first lifts of light load (3 kg) and heavx load (IT kg) 

when the mass was known and unknown 63 
Figure 4.2: Peak compressive forces of the five lifts of light load (3 kg) known and unknown 

conditions fo4 

Figure 4.3: Peak compressive forces of the five lifts of the heavy load ( I 7 kg) known and unknown 
conditions 65 

Figure 5.1: Peak compressive forces at the L5/S1 for all conditions ~S 



www.manaraa.com

v i  

LIST OF TABLES 

Table 3.1: Peak compressive forces at L5/S1 joint, kinematic and kinetic variables at the values of the 
peak compressive forces, from all subjects 3 l> 

Table 3.2: Mean v alues from 10 pre fatigue and 10 post fatigue lifts of the 5 subjects that increased 
their peak compressive forces. Kinematic and kinetic variables were the values at the peak 
compressive forces 40 

Table 3.3: Mean values from 10 pre fatigue and 10 post fatigue lifts of the S subjects that decreased 

their peak compressive forces. Kinematic and kinetic variables were the values at the peak 

compressive forces 41 

I able 4.1 : The first lifts (means = standard deviations) of light (3 kg) and heavv i I "kg) load when 
the mass was known and unknown h0 

I able 4.2: The five lifts (means = standard deviations) of light (3 kg) load when the mass was known 
and unknown hi 

Table 4.3: The five lifts (means ± standard deviations) of heavy ( 1 7 kg) load when the mass was 

known and unknown hZ 

I able 5 1 Means and standard dev iations of the peak compressive forces at the L.5 S 1 and other 

variable* from all conditions. All variables were measured at the time of the peak compressive 
force-* '  



www.manaraa.com

vii 

ACKNOWLEDGMENTS 

First of all, I would like to thank to my God and Savior, Jesus Christ who always guides my 

steps, especially in the process development of this research dissertation. 

To Dr. Patrick Patterson, my co-major professor and the chairman of Industrial and 

Manufacturing Systems Engineering (IMSE) department of his support when pursuing my Industrial 

Engineering's doctoral degree. 

To Dr. Timothy Derrick, my co-major professor who has spent his valuable times helping me 

in my research dissertation. 

To my doctoral committee members: Dr. Stephen Vardeman, Dr. S. Keith Adams, and Dr. 

Timothy Van Voorhis. 

To the faculty and staff of IMSE department, especially to Lori Bushore who provides 

information that I needed during my study in IMSE department. 

To my father and mother, and sisters in Indonesia who always pray, love and support me 

when I was study abroad. 

To Freddy Haryanto, my best friend who always listens my difficult times and encourages mc 

to finish my degree. 

To Dr. H T David, who has believed and gave me opportunity to pursue my doctoral degree 

in Iowa State University (ISU). 

To my friends in IMSE department: Supachai Pathumnakul, Yi-Chiuan Lai, Wooyeon Yu. 

and Supapan Sangnui. 

To Joshua Thomas, who became subject of my three studies, Rhonda Decook. who helped me 

with statistics tools, and Terry Reintz, who has checked my writing dissertation. 

To all subjects, especially my ex IE-304,1E-305 and IE-361 students who have volunteered 

to help my research. 



www.manaraa.com

VII I  

ABSTRACT 

The lifting task is the major activity contributing to the risk of lower back injur}. The purpose 

of this study was to examine the mechanical stresses on the lower back during manual lifting and to 

analxze how people adapt to the stresses. This purpose was accomplished by approaching the 

mechanical stresses on the lower back from three different perspectives. The effects of manual lifting 

tasks were measured as: the fatigued condition, the knowledge of load and the prex ions lilts, and 

effort in lifting oxer a constraining barrier. A biomechanical model ( linked segment and rigid bodx i 

ua> applied to estimate the peak compressive forces at the L5/S1 (lower back) joint during the 

manual lifting tasks. Three-dimensional locations of joint markers were digitized using a Peak Video 

and Analog Motion Measurement System. A strain-gage force platform was used to determine the 

location, direction and magnitude of external ground reaction forces acting on the feet. The peak 

compressixe forces at the loxxer back xvere insignificantly different when individuals x\ere fatigued. 

Some indix iduals increased and others decreased when they were fatigued. Indixiduals tended to lift 

faster and bring the load closer to the body when fatigued. Individuals applied different techniques of 

lifting xxlien thex xxere fatigued. Individuals lifted and adapted differentlx during the subsequent lifts 

when lifting known or unknown loads of different masses. Lifting under an unknown condition 

generated greater stresses on the lower back, especially when the load was light. When lifting a light 

load, indix iduals adapted to the lifts by bringing the load closer to the body, which reduced the 

stresses on the loxxer back. Hoxvever. when the load was heavy, individuals adapted the lifts bx 

changing the lifting technique, which did not reduce the stresses on the loxver back. Lifting oxer a 

constraint barrier dex eloped greater forces on the lower back. Individuals required more Hexing of the 

loxxer back and less bending of the knees when lifting over the barrier. Individuals adapt to their 

internal or external lifting environment. These adaptations can increase or decrease the peak 

compressive forces. 
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CHAPTER 1: DEVELOPMENT OF THE PROBLEM 

Introduction 

Manual material handling (MMH) tasks are required in many jobs and activities, such a.s 

loading and unloading of boxes/cartons, removing materials from a convexer belt, or stacking items 

m a warehouse. Consequently many workers may be at risk of suffering work-related injuries 

performing those activities. The National Safety Council reported that more workers injured their 

backs than any other body part from 1987 to 1994 (Mitai et al.. 1997). In addition, the National 

Institute of Occupational Safety and Health (NIOSH) estimated that the total cost of back injuries in 

the I nited States in 1991 was between 50 and 100 billion dollars (MitaI et al.. 1997). According to 

these facts, back injuries associated with manual material handling tasks haxe been a serious problem 

for both the indix idual and the national economy. 

There are main different tx pes of the MMH tasks, such as lifting, holding, carrx mg. pushing, 

and pulling. Nearlx 50% of such injuries occur xvhile lifting objects, while only 9% occur while 

holding, xxielding. throwing, or carrying objects (Klein. Roger. Jensen, and Sanderson. 1984). 

Therefore, lifting is considered the most common MMH task associated with the occurrence of low 

back injuries. This is why many research studies have concentrated on the manual lifting tasks to 

dexelop knoxx ledge of injury prevention in the loxv back. 

One common aspect in many studies of lifting tasks is the comparison of lifting techniques. 

There are two different techniques that are often analyzed: squat (straight-back, bent-knee) and stoop 

(bent-back, straight-knee). The squat technique produces less stress in the loxxer back than the stoop 

( Andersson and C'haffin. 1986). Hoxvever. the squat technique xvas the most demanding technique, 

requiring the highest oxygen consumption and inspiratory ventilation volume, of the two techniques 

(Kumar. 1984). So. in reality, people do not use these txvo extreme techniques, they instead use a 

combination of both techniques, the free-style technique. 
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Many studies examined the lifting task by using a biomechanical approach, in which stresses 

incurred in the bod) while lifting are estimated. Focus is primarily on the lower back, especial l\ the 

L5 S1 disc ( Buseck et al.. 1988. Busch-Joseph et al.. 1988). These studies used a linked-segment and 

rigid body model to estimate the flexion-extension forces and moments that occurred in the lower 

back during lifting trials. The biomechanical models that have been used in the stud) of manual 

lifting tasks require kinematic and kinetic data collected during the movement. To collect the 

kinematic data, some researchers placed a variety of markers on the body. i.e.. joint centers, and 

detected the positions of each marker by using video-camera systems ( Patterson et al.. 198". Gagnon 

et al.. 1996). For the collecting of kinetic data, some researchers used the force platform s\ stem to 

measure the ground reaction forces of the body that developed between the subject's feet while 

standing on the force platform. This ground reaction force provided data to calculate the forces and 

moments of each joint in the body (Schipplein et al., 1990). To increase the accuracy of 

biomechanical models, subject anthropometry data are required. This data provides the information 

needed on the human body, such as the position of joint centers, mass, center of mass, radii of 

g\ration, and segment length for each body segment. Some anthropometry data have been obtained 

h> using different measurement techniques, such as gamma ray (Zatsiorsky and Seluyanow. 1983). 

and computed tomography (Pearsal et al.. 1996). 

Lifting objects is certainly a physically exerting task, especially in lifting tasks that must be 

done repetitive!). Repetitive lifting has been shown to be a risk factor for the development of low 

back injur} (Frymoyer et al.. 1983) and caused a rapid development of back extensor muscle fatigue 

( Petrofsk) and Lind. 1978. Potvin and Norman, 1993). The fatigued condition as related to the 

particular risks associated with the injury of lower back during lifting has been investigated. Chen 

(2000) found that the peak compressive forces on the L5/SI disc were increased when localized arm 

fatigue was generated. However. Dolan and Adams (1998) discovered that peak spinal compression at 

lower back was decreased after the repetitive lifting task was performed. These previous studies have 
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shown different results of the compressive forces at lower back when fatigue condition was readied. 

The first stud) applied a fatigue protocol of particular parts of the body that emphasized control. The 

second study used multiple lifts to fatigue the entire body, however, the fatigue condition of the 

subjects was not until volitional failure. The subjects were asked to lift 100 times, so the magnitude of 

fatigue w as probabl) different betw een subjects. Thus, a further studx of the mechanical stresses 011 

the lower back as the effect of fatigue, which was generated from the repetitive lifts, was justified. 

The daily situation of workers like refuse collectors, luggage dispatchers and movers is 

fumlainentallx different from the situation in which an unsuitable preparation is achieved bv giving 

false expectations. Epidemiological studies have shown that workers exerting sudden unexpected 

maximal efforts are particularly vulnerable to low back disorders (Magora. 1973). Some experimental 

lifting studies have inv estigated the effect of load knowledge on the lower back loading. Most of the 

studies found that lifting an object with versus without load knowledge resulted in an increased 

I u m ho-sacra I loading in the latter condition (Patterson et al.. 1987. Butler et al.. 1993. Commissaris 

and Foussaint. 1997. de Looze et al.. 2000). However, one study showed that the absence of load 

knowledge, particularly the underestimation of the object mass did not lead to an increase in low hack 

loading i dei Burg and van Dieen. 2001 ). These previous studies have shown different results of the 

stresses occurred at lower back as the effect of knowledge of the load. None of these studies 

investigated the effect of previous lifts to the subsequent lifts either under the known or unknown 

condition. The investigation of how people adapted the previous lift during the subsequent lifts could 

be a good prevention of the injur} that possible happened during lifting tasks. Thus, a further studx of 

the mechanical stresses on the lower back reflecting the effect of load know ledge and the effect of the 

prev ious lifts was performed. 

Manx manual material handling (MMH) tasks require individuals to lift from, and lower into, 

industrial bins. These bins or barriers can serve to constrain the flexion of the knee and this can have 

implications for spine flexion during load handling. However, only one stud) (McKean and Potvin. 
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2D01 ) showed that the constraint barrier appeared to increase the risk of injury during lifting and 

lowering by increasing horizontal reach, trunk flexion and magnitude of muscle actix itx i EMG ). This 

prcx ious studx did not calculate the stresses on the lower back (i.e.. moments, compressive forces) 

during lifting under the constraint barrier condition. The previous studx also onlx compared lifting 

tasks oxer a single constraining barrier ( 120% of knee height) to the non-constrained condition 

I freestyle). Thus, a further study, xvhich estimated the mechanical stresses on the loxxer back as the 

response of different heights of constraining barrier, was performed. 

Statement of the problem 

Excessive amounts of stress on the loxxer back disc during manual xxork max cause serious 

problems in the lower back. Decreasing the magnitude of these stresses or prexenting the effects of 

the mechanical stresses may reduce the injury potential. The mechanisms used to reduce these 

stresses are largeIx unknown. By examining the effects of mechanical stresses and the mechanisms 

inxolxed in producing the amount of stresses, it may be possible to more accuratelx predict 

mechanisms that xvill lead to a reduced injury potential. 

The purpose of this research xvas to examine the mechanical stresses at the lower back and to 

analxzc hoxx people adapted the stresses during manual lifting. Considering the mechanical stresses of 

the loxxer back enables preventing lower back injuries while studying different aspects (conditions) of 

the manual lifting tasks. This purpose was accomplished by approaching the mechanical stresses on 

the lower back from three perspectives. The first xvas to examine the stresses at the loxxer hack and to 

analyze hoxx individuals adapted the fatigue condition during continuous!) manual lifting. The second 

was to determine the stresses at the loxxer back as the effects of previous lifts and the knoxx ledge of 

the load during the lifts. It xvas investigated how individuals adapted during the subsequent lifts either 

when they had knowledge of the load or when they did not. The lifts were performed under two load 

magnitudes (light and heavy) and txvo levels of load knowledge (knoxvn and unknown). The purpose 
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of the third portion of this stud} was to determine stresses at the lower back and to analyze how 

indix iduals adapted during lifting a load over the constraining barrier with varying lex el of heights. A 

bar as the constraining barrier xvas placed between the load and subject during the lifting task. 

Limitations 

The following limitations applied to this study: 

The subjects xxere selected from a somexvhat heterogeneous population of loxxa State L'nixersitx 

students. In order to establish some amount of control over the environment and to alloxx 

instrumentation of the subjects, all lifting trials took place in the laboratory enx ironment. It is 

acknowledged that this is not the actual manual material-handling environment and the results could 

luxe been affected. 

Assumptions 

The folloxxing assumptions were made in this study: 

I The biological signals xxere sampled at an adequate frequency (kinematics: 120 Hz. ground reaction 

forces: 120 Hz. electromyography: 1000 Hz). 

2.The sample of subjects adequately represents a typical xvorking population. 

3. Marker placement and marker movement effects relative to the joint centers are minimal and will 

not affect the results and conclusions. 

4. The assumptions of a segmented rigid body hold. In particular that the body can be described bx 

segment point masses that have fixed, hinged joints, constant segment moments of inertia and 

constant segment lengths. The model also assumes minimal co-contraction of antagonistic muscles 

that cross L5 S1 and minimal contribution of intrerabdominal pressure of the extensor moment. 
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CHAPTER 2: REVIEW OF LITERATURE 

Introduction 

A wide variety of jobs require manual material handling (MMH). and consequently many 

workers may be at risk of suffering job-related injuries performing those actix ilies. The National 

Safety Council published data that indicated that from 1987 to 1994 more workers had injuries to the 

hack than any other body parts (Mitai et al.. 1997). Back injuries are not only prevalent, but they can 

also he debilitating. In 1985. The National Center for Health Statistics reported that back impairment 

was the most common cause of chronic activity limitation in people under age 45 and ranked third in 

those aged 45-64 ( KhaliI et al.. 1993). Compounding the problems of frequency and severity is the 

great economic burden to the individual and the economy associated with back injuries. The National 

Institute of Occupational Safety and Health (NIOSH) estimated that the total cost of low back injuries 

tor the I nited States in 1991 was between 50 and 100 billion dollars ( Mitai et al.. 199" i. 

furthermore, the low back pain is considered to be the most expensive health care problem in the 3(>-

5<i age group i khaiil et al.. 1993). 

Low back injuries 

The most common cause of low back injury is muscle or ligament strain, which is often 

caused by excessive lifting, off-balance motion, or fatigue. The injuries may result in a reduction in 

range of motion due to stiffness, weakness, and painful muscular spasms. Another common source of 

low back injury is the degeneration of the intervertebral discs, which is most likely caused by a 

combination of repeated overexertion and physiological changes due to aging. As a result, tears 

develop in the annul us fibrosus. the nucleus pulposus in a disc segment propagates into the aimulus. 

and the intervertebral disc begins to bulge. A herniated disc that presses on a nerve root will cause 

back pain and may result in sciatica, which is pain in the back of the leg and foot associated with the 
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compressed nerve (Breakstone. 1992). The nucleus pulposus may also propagate toward the end 

plates, causing weakening of the junction between intervertebral disc and the vertebra ( Andersson. 

19951. Injuries to the fourth lumbar'fifth lumbar (L4/L5) and the fifth lumbar first sacral ( L5 S1 ) 

intervertebral discs account for 95% of all disk injuries in the lumbar vertebrae (Gracovetskv. 1990). 

Intervertebral disc degeneration can lead to more serious injury in the lumbar vertebrae, such as 

damage to the articular bony processes. Degeneration at these apophyseal joints max cause a 

condition called spondylolisthesis, in which vertebrae shift forward and out of alignment with the rest 

of the lumbar vertebrae. 

After the onset of low back injury. 70% of all people can expect to get better w ithin three 

weeks without specific treatment, and 90% will be free of discomfort in eight weeks i Breaksone. 

1992). However, low back injuries haxe a high rate of recurrence and approximate!) 60° •> of those 

vx ho have recov ered \x ill suffer again from pain within the first year after injur). Treatment of loxx 

back injuries ranges from restricting activities, taking medication, and applying heat or cold at home 

to open-back surgery. 

Lifting tasks 

There are many different types of MMH tasks, such as lifting, holding, carrying, pushing, and 

pulling. Nearly 50% of such injuries occur while lifting objects, while only 9% occur while holding, 

xx ielding. throwing, or carrying objects (Klein. Roger. Jensen, and Sanderson. 1994 ). Therefore. 

lifting is considered the most common MMH task associated with the occurrence of loxx back 

injuries. This is xxhx the most research studies have focused on the mechanisms and aspects of 

manual lifting task. 

Generally, the goal of those studies has been to develop knowledge in the movement of 

human body during the lifting trials, and to prevent the risk of injuries, especially in the loxxer back. 

Studies hax e shown that stresses in the loxver back during manual lifting to be affected bx the speed 
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of the lift and the external loads (Buseck et al.. 1987). and also by the techniques of lifting (Busch-

Joseph et al.. 1988). Those studies concluded that increased speed means increased acceleration, 

which means increased muscle forces and increased compressive forces on the lover back. 

Techniques of lifting 

The two extremes of manual lifting technique that are frequently discussed in the literature 

are squat ( leg lifting) and stoop (back lifting). The squat technique is the style where the knees are 

llcxed and the trunk is straight. The stoop is the style where the knees are straight and the trunk is 

tlexed. In reality these techniques are rarely used in their purest form, but rather modifications occur 

depending on the circumstances of the lift: a freely chosen lifting technique is often called "free

st) le". 

Burgess-Limerick and Abernethy ( 1997) attempted to quantify the lifting technique using a 

postural index. I his was defined as the ratio of knee flexion from normal standing to the sum of 

ankle, hip. and lumbar \ertebral flexion. The results showed the stooped postures adopted at the start 

of a lift correspond to postural indices close to 0.0. whereas full squat postures correspond to postural 

indices close to 1.0. The typical values of postural index for normal (using "free-style") lifting were 

between 0.5" to 0.61. These postural index results showed that lifting posture was independent of the 

task characteristics and specific joint positions (load mass and initial load height). 

The physiological cost of the three different techniques of lifting (squat, stoop and free-sty le i 

in the symmetric and asymmetric planes has been studied (Kumar. 1984). The squat has been shown 

to be the more physiologically demanding technique in terms of oxygen consumption and inspiratory 

ventilation volume. The stoop was the least physiologically demanding. The squat technique 

generated lower biomechanical stresses on lower back than stoop technique (Andersson and Chaffin. 

1986). However, this result only works in one condition that the load being lifted must lit between the 

knees while using the squat technique. If the load is very large that must be lifted in front of the 



www.manaraa.com

9  

knees, the horizontal distance from the load to the lower back (L5/S1 disc) becomes excessive and 

greatk increases the stresses on the lower back. Otherwise, using the stoop technique will minimize 

the horizontal distance, and. will decrease the stresses on lower back. 

The efficiency and effectiveness of stoop and squat techniques at different frequencies of 

lifting have been investigated (Welbergen et al.. 1991 ). The results showed the mean power output 

and oxygen uptake were greater for squat than stoop techniques at the same frequencies. The 

mechanical efficiency was defined as the power output divided by the energy equivalence of o.wgen 

uptake. The result was no significant different between the two techniques. The effectiveness was 

defined as the productiv e external power output divided by the equivalence of oxygen uptake. And. 

the result was significant!) higher for the stoop technique than squat. 

Based on the lifting technique, therefore, different muscle groups will be used to prov idc 

necessary net joint forces and moments to perform the lift, and their activ ities will be different. For 

example, when using the squat technique, the strength of quadriceps muscles will be a limiting factor. 

I his is because of the muscle cross sectional area of the erector spinae muscle is larger than that of 

the quadriceps muscles. So. it can be anticipated that at heavier loads the stoop technique would be 

adapted (Davis et al.. 1965). The changes in lifting technique as a function of the amount of weight 

lifted also has been discovered (Schipplein et al.. 1990). The results showed that the lifting technique 

changed from more of a squat to more of a stoop as a result of biomechanical stresses when the 

weight of external load was increased. It was also discovered that lifting technique changes from 

more of a squat lift to more of a stoop lift when the quadriceps muscles w ere fatigue (Trafimow et al.. 

1993). 

Biomechanical models 

There are several methods that could be used to estimate compressive force in the lower back. 

The different types of biomechanical analyses of stresses on the lower back during manual lifting 
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include direct measurement method, simulation models, finite element method, electronnographv 

i L\Ki). top down and bottom up approach. 

Intradiscal pressure measurement is the most direct and reliable method for assessing loads 

on the spinal motion segment. Nachemson and Elfstrom ( 1970) first described this measurement 

sx stein. which consisted of a pressure transducer attached to the tip of a needle inserted between 

vertebral discs. Disc-pressure measurements also have been used to validate biomechanical models 

from which the loads on the lumbar spine were predicted (Schultz et al.. 1982). The results of this 

experiment, the predicted load and measured quantities correlated well. It was shown that such 

invasive measurements could be avoided and replaced bx prediction from a biomechanical model 

under a variety of conditions. 

A stochastic (probabilistic! model of trunk muscle activation was developed to quantitative!) 

capture the trunk muscle variability during bending motions, such as those involved in lifting (Mirka 

and Marras. 1993). The model was based on a simulation of experimental I) derived data and 

predicted the possible combinations of time-dependent trunk muscle coactivations that could be 

expected given a set ol trunk bending conditions. The results indicated that the variability in trunk 

muscle force had a small effect on spinal compression variability (-n- 7% of mean compression), but 

greatly influenced both lateral 90% of mean) and anteroposterior shear forces ( - - 40°» of mean i. 

A biomechanical simulation model has been developed to obtain a tool for anal) zing the 

relations between forces in muscles, ligaments and joints in the transfer of grax itational and external 

load from the upper body via the sacroiliac joints to the legs in normal situations (van Dijke et al.. 

1999). The model comprises 94 muscle parts. 6 ligaments and 6 joints. The model enables the 

calculation of forces in the pelvic structure for different postures based on linear/non-linear 

optimization scheme. 

The finite element method treats the lumbar spine disc as a geometric mesh of tensile 

elements and assigning material properties according to the type of biological structure being defined. 
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As the exterior loading inputs are altered, the mesh will deform as a function of the geometry and the 

material stiffness properties assigned to each element. The deformation in the mesh is compared with 

experimental results using discs from cadavers under similar loading conditions. These models can he 

valuable in predicting which components of the lumbar spine are the most highly stressed and are at 

risk of being injured (Lavaste et al.. 1992. Rao and Dumas. 1991. Shirazi-adl. 1989). 

EMG activity of the erector spinae (back and fascia) muscles, using corrections for muscle 

length, contraction velocity and electro-mechanical delay were used to calculate the extensor moment 

acting on the lumbar spine during lifting activities (Dolan and Adams. 1994). The results of this studx 

showed that the techniques of lifting, mass of the load, horizontal distance in front of the feet, and 

speed of movement influenced the peak extensor moment on the lumbar spine. The stoop lifting 

generated 10% lower of the peak extensor moment compared to squat lifting. Extensor moment 

increased substantially with increasing mass, horizontal distance from the feet, and the speed of 

movement. 

The various ty pes of biomechanical models assume the human body to be composed of 

dynamic, rigid, and linked segments. These types of models apply laws of motion and mechanical 

properties to estimate stresses incurred in the body while lifting. Many types of these models focus 

primarily on the lower back, specifically the lumbosacral vertebrae, because of the high incidence of 

injuries in that area of the body. Based on statistics, it was shown that between 85% and 95% of all 

disc herniations occur which relatively equal frequencies at the L4/L5 and L5/S1 levels ( Smith et al.. 

1944. Armstrong. 1965. Krusen et al.. 1965). 

In order to study these types of biomechanical models of manual lifting, especially the 

stresses that occurred in the lower back, the kinematics, kinetics and anthropometry data information 

are required: 
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kinematics 

The description of the human movement, independent of forces that cause the movement is 

called kinematics. They include linear and angular displacements, velocities, and accelerations I lie 

displacement data are taken from any anatomical landmark: center of gravity of body segments, 

centers of rotation of joints, extremes of limb segments, or key anatomical prom i nances. The 

velocities and accelerations data are derived from the displacement data. 

Investigators in human movements, especially in lifting motion were interested usually 10 use 

v ideo-based systems to track the positions of a variety of markers placed on the body, as follows: 

A ho lex sixteen-millimeter camera and black theatrical greasepaint markers, which were manually 

digitized to detect the position of markers during lifting motions (Patterson, et al.. 1987). 

Stereocineniatography with two locam sixteen-millimeter cameras to analyze the position of 

anatomical markers during asymmetrical lifting (Gagnon and Gagnon. 1992). 

kinet ics  

The study of the forces and the resultant energy generated by the body during human 

mov ement is called kinetics. Knowledge of the patterns of forces is necessary for an understanding of 

the cause of any mov ement. The process by which the reaction forces and muscle moments are 

calculated is called link-segment modeling. This link-segment model works based on some 

assumptions, as follows: 

1. Each segment has a fixed equivalent mass located as a point mass at its center of mass (which will 

be the center of gravity in the vertical direction). 

2. The location of each segment's center of mass remains constant within the segment during the 

movement. 

3. The joints are considered to be frictionless hinge (or ball and socket) joints. 
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4. The mass moment of inertia of each segment about its mass center (or about either proximal or 

distal joints) is constant during the movement. 

5 The length of each segment remains constant during the movement. 

In the link-segment model, the human body is assumed to be a chain of rigid segments. These 

segments are interconnected by joints, which are considered as hinge joints. Conventional New Ionian 

mechanics are applied to each individual segment, starting at the distal or proximal end of the chain, 

and intersegmental reactive moments and forces are calculated, considering inertial as well as 

gra\ itational effects. 

In order to measure forces exerted by the body on an external body or load,  a  suitable force-

measuring de\ ice is required. A device, called a force transducer, gives an electrical signal 

proportional to the applied force. There are many kinds of force transducers available: strain gauge, 

piezoelectric, piezoresistive. capacitive, and others. The most common force acting on the body is the 

ground reaction force, which acts on the foot during the motion, such as lifting, walking, and running. 

A torce platform constructed with strain gauges was used to analyze offerees and torques on the 

lower back joint between static and dynamic models of lifting tasks that performed in four different 

lifting techniques (Leskinen. 1985). The piezoelectric platform has been used to study the relationship 

of the joint moment magnitude at L5/S1 disc, hips and knee joints w hile lifting (Schipplein et 

al . .  I  WO).  

The link-segment biomechanical model can be applied in different starting point of analysis, 

as follows: 

Top-Down approach 

The Top-Down approach (Leskinen et al., 1983, Freivalds et al.. 1984. Kromodihardjo and 

Mitai. 1986) starts applying first equation to the hands/load segment, assuming no external forces 

besides gravity acting in this segment. Next, applying the equation to links respectively to forearms. 
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upper arms, and trunk segments to assess moment and force acting at an intervertebral joint. In this 

analysis no force-platform data are used. 

Bottom-Up approach 

The Bottom-Up approach ( B use h-Joseph et al.. 1988. Buseck et al.. 1988. Schipplein et al.. 

1990) starts apply ing the equations to the feet. Next, the procedure is the same as the top-dou n 

approach, but in the opposite direction by applying the equations to links representing the louer legs, 

upper legs, and pel\ is respectively, moment and force at one of the intervertebral joints are 

calculated. In this approach, force platform data are required to generate ground reaction forces. 

When the analysis starts at the feet, the sequential application of equations ends at the hands/load 

segment. 

The lifting tasks in this study were done using the bottom-up approach to calculate the 

stresses on the lower back during manual lifting. A study of validation of two-dimensional dynamic 

linked segment model either using Top-Down or Bottom-Up approach to calculate joint moment at 

1.5 SI level in lifting was done (de Looze et al.. 1992). The reactive forces and moments were 

calculated both by started once at the feet (ground reaction forces) and started once at a hands load 

segment. I he moments at L5 SI. calculated starting from the feet compared to starting from 

hands load y lelded a coefficient of correlation (r) equal to 0.99. 

Anthropometry 

In order to increase the accuracy of these types of biomechanical models. Subject 

anthropometry data were required to take into account the different body shapes and sizes of 

indiv iduals. The human movement analysis requires kinetics measures as well: masses, moment of 

inertia, and the center of mass locations. Some previous studies of developing the anthropometric data 

measurement (segment inertial parameter) are as follows: 
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Eight unfrozen cadavers were used to investigate the center of mass, w eight, and moment ot 

inertia of the body segments (Dempster. 1955). Clauser et al. (1969). then did similar segment 

characteristics to Dempster, but used thirteen frozen cadavers. Finally. Chandler et al. ( I9™5 ) studied 

on same segment parameters from six cadavers, plus, found the joint centers of rotation bx dissection 

through segmentation planes. 

Zatsiorky and Seluvanow (1983) determined the center of mass, weight, and radii of gyration 

for body segments from 100 live subjects using a gamma-rav scanning technique. This segment 

parameter model was not used for the biomechanical model in this research. This was because this 

model used bony landmarks as reference points for locating segment center of mass (CM) and 

defining segment lengths. Some of these points are remarkably distant from the centers of the 

neighboring joints. As consequence, when subject flexes his joints the distance of these reference 

points from the respective proximal or distal segment CMs significant!) decrease. These and other 

related changes, which make it impossible to accurately locate segment CVls. de Leva ( 1996) revised 

the Zatsiorskx and Seluvanow ( 1983) segment inertia parameters to reference joint centers rather than 

bony landmarks. 

The biomechanical model of the current study was used de Leva (1996) segment inertia 

parameter's values, except for the pelvis (loxver trunk) segment. This xvas because de Leva defined 

the louer trunk segment as the segment between the omphalion and the hip joint center. The model of 

current study utilizes a pelvis segment defined by the hip and L5/S1 joints. 

Static and dynamics models 

In the early twentieth century, most of the researches of manual lifting were static, thus 

revealing the postural stress due to gravity. When using static models the effects of acceleration are 

assumed negligible which leads to a large underestimation of the spinal stress in dynamic activities, 

such as lifting. In dynamic models, the inertia! forces and torques induced by acceleration, based on 
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the initial and final positions and the total displacement time of each joint are involved. Some studies 

ha\ e compared static and dynamic models in lifting, as follows: 

The peak compression force on the lumbosacral joint of dynamic model for four different 

lifting techniques were 33% to 60% higher than in the static model depending on lifting technique 

( Leskinen. 1985). Tsuang. et al.. (1992) showed the flexion-extension moments at L5SI le\el and hip 

joint using static and dynamic analysis for two different weights (50 N and 150 N) and two different 

speeds (normal and fast). The results showed the difference between dynamic and static analysis wa> 

greatest when lifting 50 N at a fast speed: an 87% increases in L5 SI moment and 95",, increases in 

hip joint moment was observed when replacing the static with a dynamic analysis. 

Two-dimensional and three-dimensional dynamic models 

The two-dimensional dynamic lifting model (Busch-Joseph et al.. 1988. Buseck et al.. 1988. 

de Looze et al.. 1992. Schipplein et al.. 1990) restricts analysis to the sagittal plane only, and assumes 

that the movement is symmetrical, considering only two-dimensional movement flexion and 

extension of the back. The movement that occurs about the longitudinal axis of the segment is 

negligible. 

The three-dimensional dynamic model is a complicated model that includes twisting of the 

hack and asy mmetrical motions. A dy namic three-dimensional multi-segment model to compute 

spinal loading (torsion, flexion/extension, and lateral-bending moments) for asymmetrical lifting and 

lowering tasks performed in different speeds has been developed (Gagnon and Gagnon. 1992). The 

results showed that lifting tasks, in the fast and accelerated conditions, generated significant increases 

over the slow condition for torsion, flexion/extension, and lateral-bending moments in the L5 S1 disc. 

A three-dimensional and dynamic model of the human body for lifting motion, w hich has been 

developed to predict the T10/TI1 intervertebral joint moment (Gillette. 1999). This study investigated 

a three-dimensional model to predict joint forces and moments at TI0/TI I as an upper body and a 
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louer body formulation. The model of this study was also used to compare between symmetric and 

asymmetric lifting for both leg-lift and back lift techniques. 

Muscular fatigue and electromyography (EMG) 

Fatigue, generally defined as a transient loss of work capacity resulting from preceding work, 

produces a general feeling of discomfort and frustration and interferes w ith well being and 

performance. Muscular fatigue specifically is defined as a reduction in maximal production of the 

muscle and is characterized by a reduced ability to perform work. 

Fatigue can be classified as central or peripheral on the basis of the location of the site of 

fatigue. Possible causes for central fatigue include a malfunction of the nerve cells or inhibition of 

voluntary effort in the central nervous system. Other factors that may influence central fatigue include 

psychological factors and motivation that influence how much effort an individual will give, 

particularly if pain is associated with continuing an activity. Peripheral fatigue refers to fatigue at a 

site beyond the central nervous system: this may include sites within the peripheral nervous system or 

\\ itlnn the skeletal muscle. Peripheral fatigue can occur at several sites: the neuromuscular junction, 

the sarcolemma-T-tubules-sarcopiasmic reticulum system. It is also possible that fatigue results from 

biochemical and metabolic changes within the contractile elements (myofilaments of the muscle cell ). 

Electromyography (EMG) is defined as the recording of action potentials emitted from 

contracting muscles (Chaffin and Andersson. 1999). There are two types of electrodes of EMG. 

w ithin the muscle (i.e.. an indwelling or intramuscular electrode), and on the skin (i.e.. surface 

electrode). The relationship of EMG activity to muscle force, which depends on sev eral factors, 

appears to be monotonie, in the sense that an increase in tension is paralleled by an increase in 

myoelectric activ ity . However, this relationship is nonlinear under many circumstances. 

EMG signals processed by means of so-called full-wave rectification have been used to study EMG 

force relationships. These relationships are often empirically described with piecewise linear 
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regressions (Chaffin et al.. 1980) or by using power functions of the form IEMG = a< F l'b. u here the 

parameters a and b are fit by least squared error regressions (Kumar. 1996). 

The EM G is used to evaluate not only relative muscle activity, but also localized muscle 

fatigue. Such an estimate of muscle fatigue relies on changes in the spectral and amplitude, 

characteristics of the EMG. A comparison of the electrical activity from the biceps brachii during 

three stages of a fatiguing static contraction has been studied. The results showed both increase in 

amplitude and decrease in median frequency with fatigue (Zuniga and Simon. 1969). 

The effect of fatigue conditions 

Lifting objects is certainly a physically exerting task, especially in the lifting task.-, thai must 

be done repetitively. Repetitive lifting has been shown to be a risk factor for the development of lou 

hack injury ( Fry mover et al.. 1983). Some experimental studies have shown that repetitive lifting 

causes a rapid development of back extensor muscle fatigue (Petrofsky and Lind. 1978: Potv in and 

Norman. 1993 ). Muscle fatigue has also been defined as any reversible decrease in the performance 

capacity of a muscle that results from its activity (Bigland-Ritchie and Woods. 1984). 

I he particularly high risks associated with repetitive lifting may be cause of excessive lumbar 

flexion with resulting fatigue on the back muscles investigated by Dolan and Adams ( 1998). The 

erector spinae muscles protect the spine from excessive flexion, but in so doing they impose a high 

compressive force on it. If these muscles become fatigued, and therefore less able to generate high 

forces quickly , then the moment (bending) acting on the lumbar spine may increase, and the 

compressive force decrease. Fatigue in the erector spinae muscles was quantified by comparing the 

frequency content of the EMG signal during static contractions performed before, and immediately 

after repetitive lifts. 

Another investigation of the repetitive lifting tasks showed fatigue that generated from 

repetitive lifting tasks was documented as the reduction in the average lifting force of hip joint and 



www.manaraa.com

19 

spine torque generation. Fatigue was also associated w ith decreased knee and hip motion, and 

increased lumbar flexion (Sparto et al.. 1997). The fatigue condition was defined either as subjective 

opinion (subject thought that he could no longer continue to lift) or w hen the heart rate of the subject 

attained 180 beats per minute. 

Chen (2000) found that the peak compressive force on the L5/SI disc was increased when 

localized arm fatigue was generated. The fatigue condition of this study was generated by requiring 

the subject to stand erect with shoulders flexed at ninety degrees and elbows fully extended while 

holding a 5-kg barbell w ith both hands until the subject was unable to maintain the posture any longer 

(between 25 and 40 seconds). 

Trafimow. et al. ( 1993) studied the effect of quadriceps fatigue on the technique of lifting. 

The fatigue protocol w as applied by asking the subjects to stand in a half squat until they were unable 

to hold the position (between 60 and 90 seconds). Weights from 0 N to 300 N were lifted in 50-N 

increments. Subjects tended to shift from a squat technique (most angular motion occurring in the leg 

and thigh segments) towards a stoop (most angular motion occurring in the pelvis and trunk 

segments). In spite of these kinematic changes there was no significant difference in the L5 S1 

moment pre and post fatigue. 

The effect of previous lifts and the knowledge of load magnitude 

Occupational lower back pain has emerged as a serious clinical, social and economic problem 

in industrial world (Pope et al.. 1991). In a large proportion of patients, it is currently unclear w hat 

causes the pain. Efforts to reduce the incidence of low back pain in the workplace are often based 

upon the ev aluation of manual materials handling tasks, in which several load determining factors are 

involved, e.g. the load location, the displacement of the load, the asymmetry of lifting, the lifting 

frequency , and the coupling between load and hands. The NIOSH equation prov ides a method for 

computing a weight limit for manual lifting from these factors (Waters et al.. 1993). The absence of 
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load know ledge, however, is a factor that is not accounted in this equation, or in an\ other evaluation 

approach. The dailv situation of workers like refuse collectors, luggage dispatchers and movers is 

fundamental!) different from the situation in which an unsuitable preparation is achieved h\ gix ing 

false expectations. Epidemiological studies have shown that workers exerting sudden unexpected 

maximal efforts are particular!) vulnerable to low back disorders (Magora. 1473). 

Some previous experimental studies have compared conditions where people either knew the 

actual mass or did not know, are as follow: 

Patterson et al. ( 1987) studied the peak L4/L5 moment during lifting masses of 6.8. 10.2. and 

! 3.8 kg under known and unknown the knowledge of the load. The) observed a general tendencv 

towards greater peak moments in the condition of not knowing the actual mass. In this stud), there 

were two different groups of subjects, one group of experienced weight lifters and one group of 

nov ice weight lifters. 

Butler et al. ( 1993) estimated the peak L5/SI moment for lifting loads of 0. 15. 25 and 30 kg 

i in I) at ii kg was the peak moment 30% greater in the condition of not knowing the actual mass as 

compared with the known condition. At the other masses, no significant difference was found. 

Commissaris and Toussaint (1997) studied the moment at L5/SI with a sudden change of 

lighter mass (6 kg) after a long series lifts of heavier mass (16 kg). The moment at L5 'S1 was not 

different between lifting the 6 kg and the 16 kg, until 150 ms after the box lift-off. In this stud), 

subjects were not informed about the sudden changes of load mass that were going to take place. So. 

subjects were induced to overestimate the mass to be lifted. 

de Looze et al. (2000) studied the lower back moments between the condition of know ing 

actual mass (known condition) and the condition of knowing only the range of masses to be lifted 

(unknown condition). The peak L5/S1 moments in the unknown condition were greater ( 10%) than in 

the known condition. The range of masses in this study was between 6.5 to 16.5 kg. 
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Jer Burg and Dieen (2001 ) showed the L5/S1 moments and compression forces were not 

different uhen subjects were lifting an unexpectedly heavier object (underestimation). In this study, 

subjects performed series of 10 litis of lighter mass ( 1.6 kg or 6.6 kg), and at the end of lifts a lieax ier 

mass ( 11.6 kg or 16.6 kg) xvas unexpectedly placed. So. subjects xvere induced to underestimate the 

load to be lifted. 

The effect of constraining barrier 

Manx manual material handling tasks require individuals to lift from, and lower into, 

industrial bins. These bins or barriers can serve to constrain the flexion of the knee and this can liaxe 

implications for spine flexion during load handling. However, only one study looked at the effects of 

constraining barrier on lifting and lowering, which has implications for many material handling tasks 

found in industry (Mckean and Potvin. 2001 ). In this study, the posture and muscle actix ity (EMG) 

of the lower back during lifting and lowering loads either placed behind a constrained ( 120% of knee 

height) or freestyle (no barrier) conditions were investigated. The main finding of this study \xas that 

the constraint barrier appeared to increase the risk of injury during lifting and loxxering by increasing 

horizontal reach, trunk flexion and magnitude of muscle activity loading. 
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CHAPTER 3: INFLUENCE OF FATIGUE ON L5/S1 COMPRESSIV E FORCE 
DURING MANUAL LIFTING 

A paper to be submitted in the International Journal of Industrial Ergonomics 

Budihardjo. I \ Derrick. TR b. and Patterson. P J 

Department uj Industrial and Manufacturing Systems Engineering. Iowa State University 
h Department of Health and Human Performance, low State University 

Abstract 

The purpose of this study was to examine the mechanical stresses on the lower back of 

subjects performing a lifting task until fatigued. It was hypothesized that subjects would have 

indix idual strategies for dealing with fatigue. Overall, results showed that the peak compressixe 

force-, on the loxxer back during the lifting phase were not significantly different between pre and post 

tangue. Variables that were significantly different during the time of peak compressixe force were the 

vertical acceleration of the load, the horizontal distance betxveen the center of the load and the L5 SI 

joint, the angular acceleration of the trunk, and the height of the load. During fatigue. 5 of the 13 

subjects increased the peak compressixe forces. The reasons were due to increase in the vertical 

acceleration of the load and the angular acceleration of the trunk, and shift toward a stooped posture 

when fatigued. But. 8 of the 13 subjects decreased the peak compressive forces when fatigued. The 

subjects in this group had smaller increases in the vertical acceleration of the load and the angular 

acceleration of the trunk. They also decreased the horizontal displacement of the load relative to the 

LS SI joint, increased the sacral angle, and maintained posture when fatigued. 

Relevance to industry 

Workplace activities rely on the lifting of loads, often until a fatigue condition is reached. This studx 

investigated the strategy-adopted response to changes in fatigue condition and their effects on the 
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1.5 SI compressive forces during lifting. The results have implications for lifting job design and 

prov ide useful information for further study in the prevention of low back injuries. 

Keywords: Lifting, fatigue. L5/S1 compressive forces. 

Introduction 

Biomechanical models have often been used to estimate spinal compressive forces during 

lifting activities (Chen. 2000. de Looze. et al.. 1992. Gillette. 1999. Schipplein et al.. 1990. Sparto et 

al.. 1997. Trad mow et al.. 1993). These estimations are based on knowledge of the external forces 

acting on the body as well as anthropometric and kinematic data. These data are combined in a rigid-

body. linked-segment model in which the equations of the motion are used to estimate joint reaction 

forces and moments. When combined with knowledge of lower back musculature and skeletal 

alignment the compressiv e and shear components of force in the lower back can be estimated. 

Epidemiological studies have identified manual lifting as a major factor in the occurrence of 

low hack injury (Chaffin and Park. 1973. Troup 1965). It is generally accepted that this is due the 

mechanical effects on the lower back, so appropriate predictions of the lower back stresses during 

lifting are an important prerequisite towards addressing problems of lifting induced back injury. 

Repeated lifting activities increase the risk of developing low back injuries (Kelsey et al.. 1984. 

Magora et al.. 1973. Marras et al.. 1993). Lifting develops a high compressive force on the lumbar 

spine (Dolan et al.. 1994). which can cause lumbar discs to prolapse posteriorly, especially if the 

forces are applied repetitively (Adams and Mutton. 1985). The National Institute for Occupational 

Safety and Health (NIOSH. 1981) has recommended that predicted L5/S1 compression force v alues 

above 3400 N be considered potentially hazardous for some workers. If the values are greater than 

6400 N. the job is hazardous to most workers. 

Fatigue can influence lifting kinematics and the peak moment and compressiv e forces at 

L5/S1 (the joint between the fifth lumbar and the first sacral vertebrae) during manual lifting. 
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Trafimow. et al. ( 1993) studied the effect of quadriceps fatigue on the technique of lifting. 

The fatigue protocol uas applied bx asking the subjects to stand in a half squat until thex were unable 

to hold the position (betxxeen 60 and 90 seconds). Weights from 0 N to 300 N \xere lifted in 50-N 

increments. Each weight xvas lifted once from the floor to knuckle height before and after the fatigue 

protocol. Subjects tended to shift from a squat technique (most angular motion occurring in the leg 

and thigh segments) towards a stoop (most angular motion occurring in the pelvic and trunk 

segments). I hex also reduced peak knee and hip flexion and increased peak trunk angular velocity 

In spite of these kinematic changes there was no significant difference in the L5 SI moment pre and 

post fatigue. 

The effects of arm fatigue have also been investigated (Chen. 2000). Fatigue uas induced hx 

requiring the subjects to stand erect with shoulders flexed at ninetx degrees and elboxxs full) extended 

while holding a 5-kg barbell with both hands until the subjects xvere unable to maintain the posture 

( between 25 and 40 seconds). The subjects lifted weights ranging from 5 to 30 kg in 5 increments. 

Each weight was lifted once either from floor to knuckle height or from floor to shoulder height, both 

before and after the fatigue protocol. The peak compressive forces at L5/SI were increased after the 

localized arm fatigue was generated. Also, when subjects lifted less than 20 kg the peak acceleration 

ol the load increased with fatigue. The subjects also shifted from a squat lift toxvard a stoop lift when 

the arms were fatigued. 

Sparto. et al. ( 1997) documented a reduction in knee and hip range of motion and an 

increasing in the spine peak flexion during a lifting test. The task xvas performed using a lifting dex ice 

to simulate the inertia! components of a box with weight equal to 25% of the subject's maximal lifting 

capability from mid-shank to waist level. Subjects continuously lifted until thex felt thex could no 

longer continue, or until their heart rate exceeded 180 beats/min. Fatigue was documented as a 

reduction in average lifting force and hip and spine moment generation. 
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Fatigue lias also been studied when the fatiguing protocol was actual lifts (DoIan and 

Adams. 1998). Subjects lifted a 10 kg load from floor to waist height 100 times. These researchers 

used erector spinae electromyography (EMG) in the estimation of compressive forces. Results 

showed that peak lumbar flexion increased during the 100 lifts, but the peak spinal compression 

decreased. 

These four studies highlight some of the difficulties associated with back research during 

fatigue. First, there are many ways of fatiguing the body. On a continuum between complete 

experimental control and complete generalizability of results, the first two studies chose a fatigue 

protocol that emphasized control. Particular parts of the body were systematically fatigued so that 

subjects with different lifting styles would not preferentially fatigue different parts of the bodx. The 

third and fourth studies used multiple lifts to fatigue the subjects. In this case, the part of the bodv that 

was fatigued was largely unknown but the dynamic lifting protocol was more consistent with actual 

workplace lifting conditions. In addition, the first three studies used a protocol that fatigued the 

subjects until volitional failure, the subjects in the fourth study lifted 100 times and therefore the 

magnitude of fatigue probably differed between subjects. 

In general, back research has focused on group designs in which the results of the entire 

sample are pooled. This assumes that all subjects are behaving in a consistent manner. There is no 

ability to assess individual strategies that may cause some subjects perform in a manner opposite of 

other subjects. In the group design this would cause a washout effect in which a performance in one 

direction is offset by a performance in the opposite direction. The net result is that no significant 

differences are found. 

The purpose of this study was to examine the mechanical stresses on the lower back of 

subjects performing repetitive lifting tasks until fatigued. Group differences were examined to 

determine generalized results and individual results were looked at to identify strategies adopted by 

individuals or groups of individuals. It was expected that the subjects would differ in many important 
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ways such as anthropometrics, strength, endurance, lifting style and motivation. It was hypothesized 

that these characteristics would lead to different individual strategies to deal with fatigue. 

Methods 

Subjects 

Thirteen healthy young male subjects with no history of back injuries participated in this 

studs. The mean age was 22 ± 1.6 years; body mass was 77 ± 12.9 kg; and body height was I "8 = 

0.09 m. The subjects signed informed consent to participate in this study in accordance with 

university policy. Prior to the start of the study, subjects were familiarized with the experiment 

protocol. 

Pro toco l  

Each subject was asked to lift a crate (37.5 cm length. 33 cm width. 27 cm height) containing 

a mass of 10 kg from the floor to knuckle height directly in front of the subject. The crate had two 

fixed handles placed symmetrically 27 cm above the bottom. The handles and mass center of the crate-

were positioned approximately 27 cm horizontally from the subject's ankles. Each subject wore shoes 

during the trials. The right foot of each subject was placed on the force platform during the trial 

experiment. 

Subjects began the lifting task from the standing position. From the standing position, then 

bent down, grabbed the crate and returned to a standing position as they lifted the crate to a knuckle 

height. The crate was then returned to the initial position. Each subject was asked to lift the crate at a 

normal' speed using a freestyle technique, i.e. the technique that was the most comfortable for each 

subject. A lift was initiated every 6 seconds based on an audible tone. 
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A pre-fatigue condition consisted of 10 successive lifts during the first 2 minutes ot lifts. 

E\ er> minute the subject rated the comfort level on a rating of perceived exertion (RPE) with a scale 

from 0 (no discomfort) to 10 (extremely uncomfortable). A 10 on this scale would indicate that the 

subjects would be unable to continue lifting. After the subjects reached at 9 on the scale, they were 

asked to perform another ten lifting trials while data were recorded. The final 10 lifts comprised the 

post-fatigue condition. 

Model 

Reflective Markers were placed on the second toe. the posterior point of the heel, the lateral 

malleolus, the midpoint of the lateral joint line of the knee, and the glenohumeral joint. The three 

additional markers w ere placed on the pelvis to help define the joint between the fifth lumbar and first 

sacral v ertebrae (L5/SI ). These markers were located at the end of an 8-cm wand placed over the 

anterior iliac crest and over the posterior sacrum. These markers were used to form a local coordinate 

s\ stem with the hip marker as the origin. A final marker was placed on the crate. 

Three-dimensional kinematic markers for this experiment were digitized using a Peak Video 

and Analog Motion Measurement System (Peak Performance Technologies. Inc.. Englewood. CO) 

Four 120 Flz video cameras were used to obtain the positions of the reflective markers. The marker 

coordinates w ere low-pass filtered with a fourth-order (zero lag) Butterwoth filter using a 2 Flz cut-off 

frequency. 

Before performing the lifts, each subject was asked to stand in a static erect position while 

kinematic data were recorded. The L5/S1 sagittal position was estimated to be 19.5% from the hip to 

the shoulder (Lanier. 1939 and de Looze. 1992). The sacral angle (a) was defined as the angle formed 

b> the base of sacrum (Chaffin. et al.. 1999). It was assumed to be 45° during static trial (Thieme. 

1950). The L5/S1 coordinates were then transformed into a local pelvis coordinate system with the 
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hip as the origin. The location of L5/S1 and a were assumed to be constant in the local coordinate 

system during the lifting task. 

A 5-segment rigid body model was developed using the foot. leg. thigh, pelvis, and 

head arms/trunk (above L5/SI ). It was assumed that these segments were connected by frictionless 

pin joints, namely the ankle, knee. hip. and L5/S1 joints. Each segment was assumed to ha\e a fixed 

point mass. It was also assumed that the moment of inertia about the center of mass was constant. 

C enter of mass locations w ithin the segments and the moments of inertia were approximated using 

anthropometric data and equations obtained from de Leva (1996). The only exception was the pel\ is 

segment, which de Leva defined the lower trunk segment between the omphalion and the hip joint 

center. The current model utilized a pelvic segment defined by the hip and L5/SI joints. Therefore the 

mass of the pelvis segment was estimated to be 11.8% of body mass (Web Associates. 1978). Center 

of mass and moment of inertia values were modeled as an elliptical solid (Hanavan. 1964) with 

dimensions determined from anthropometric measurements. The sensitivity of peak compressive 

force values to errors in the pel vIs center of mass and moment of inertia was estimated by increasing 

these values by 10" o during the pre-fatigue condition of one of the subjects. This increased the peak 

compressive force by less than 0.5%. 

A strain-gage force platform (Advanced Mechanical Technology. Inc.. Newton. MA model 

(JR 6-6 2000) was used to determine the location, direction and magnitude of external ground 

reaction forces. The force platform signals were sampled at 120 Hz and synchronized with the 

kinematic data using the event and video control unit (Peak Performance Technologies. Inc.. 

Englewood. CO). 

The reaction forces and moments at each joint were calculated using inverse dy namics for tlie-

standard link segment model (Winter. 1990). Newtonian equations of motion were applied to each 

individual segment starting at the foot. Reaction forces and joint moments were then estimated for the 

proximal end of each segment and the end of process was then repeated for the next segment in the 



www.manaraa.com

29 

model. Equations of motion and the anthropometric model were implemented using a custom ana K si> 

program. 

To calculate the compressive force on the L5/SI joint, the following simplifications were 

used (Chaffin. et al.. 1999): 

1. No abdominal pressure acted on the diaphragm in front of spinal column (Chaffin. et al.. 

1999. de Looze et al.. 1999). 

2. The line of action of the extensor spinae muscles of the lower back was assumed to act 

parallel to the normal force of compression on the L5/S1 joint and w ith a moment arm ( E) of 

6.0 cm (Kumar. 1988). 

3. The compression force was assumed to act at the center of rotation of the joint and thus wa> 

not considered in the moment equation. 

Muscle force ( l\, ) was then solved for as follows: 

FM = Ml5'SI / E 

Finally. the forces acting parallel to the disc compression force (Fc) were expressed by 

Fc = Fm + Fv cosine(a) + FaP cosine(a) 

XX here, a was the sacral angle. Fv was the vertical reaction force, and F.xi- was the 

anteriopostior reaction force. 

Electromyography (EMG) 

To quantify the muscular fatigue experienced by the subjects, pairs of skin surface electrodes 

(Mediatrace) were attached longitudinally over the subject's lower back. The interelectrodc distance 

w as approximately 4 cm. The EMG signal was recorded at 1000 Hz from parts of the erector spinae 

muscles at electrode locations according to Roy et al. (1989) (3-cm lateral to the spinous process at 

L5 ). The ground electrode was attached to the left side of distal end of ulnar styloid process. The 

EMG signals w ere collected for 10 lifts of pre and 10 lifts of post fatigue conditions. The analog 
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EMG signals generated from the lower back muscle activities during the lifts were preamplified ( 100 

x) and high-pass filtered at 10 Hz to remove movement artifact. The EMG signals were digitized by a 

portable data logger (Model BM42. Biomedical Monitoring. Glasgow, and U.K.). The EMG was 

digitally low-pass filtered at 490 Hz and burst activity from each lift was identified. Since the EMG 

bursts contained a complete cycle of data, nonstationarities within a burst could be disregarded 

(Bonato. et al.. 2001 ). A fast Fourier transform was used to examine the EMG signal in the frequency 

domain. The median frequency (van Dieen. et al.. 1993) and the root mean square ( R.MS) amplitude 

(de Luca. 1997) were calculated for each pre fatigue and each post fatigue lift. It has been shown that 

decreases in median frequency and increases in RMS amplitude are indicative of muscular fatigue 

(van Dieen. et al.. 1993 and Zuniga and Simon. 1969). 

Data analysis 

The time of the peak compressive forces at L5/SI was observed slightly after the instant that 

subjects lift-off the load. An example of the peak compressive force at L5 SI from one subject in the 

pre fatigue condition is shown in figure 1. There are 10 peak pairs that are relativ ely close to each 

other. The first peak of each pair represents the lifting of the load and the second peak represents the 

lowering. In between each pair of peaks is a period of time in which the subject is in a standing 

position and waiting for the next lift. In order to analyze the differences between pre and post fatigue 

lifting several variables were examined during the time of peak compressive loading. These included 

v ertical load acceleration, trunk angular acceleration, horizontal distance between the L5 SI joint and 

the center of the load, height of the load and sacral angle and the posture index (PI). The postural 

index was defined as the ratio of the knee angle to the sum of the hip and L5 SI angles. Burgess-

Limerick and Abernethy ( 1997) used a similar index to identify lifts on a continuum from complete 

stoop lifting (PI = 0.0) to complete squat lifting (Pl= 1.0). 
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Means and standard deviations were calculated for pre fatigue and post fatigue conditions. 

Repeated measures analysis of variance was performed to detect statistically significant differences 

between the conditions. Subjects were then grouped according to whether peak compressive forces 

increased or decreased w ith fatigue. Additional means and standard deviations were calculated for 

these groups. 

Results 

Overall discomfort during the lifts was documented using an RPE scale from 0 to 10. On 

average, subjects lifted for 24.4 = 18.5 minutes. This time was one minute after they reached a 9 on 

the RPE scale. Two of the 13 subjects did not reach an RPE score of 9 prior to the 1-hour time limit. 

Both of these subjects reached an 8 on the RPE score and both were left in the analy sis. The 

magnitude of muscular fatigue was documented by changes in the median frequency and R.MS of the 

electromyography. During pre fatigue, the mean median frequency of the EMG was 69.2 - 4." Hz. 

this decreased to 59.9 - 4.9 Hz after fatigue (p = 0.003). The mean RMS of the EMG was 0.10 = 

0.01 m Y in pre fatigue and the value increased to 0.12 ± 0.02 mV after fatigue (p = 0.019). Three of 

the subjects did not have EMG data due data collection errors. 

Peak compressiv e forces at L5/S1 were observed slightly after the load left the ground 

( figure 2).  Analysis  of  variance did not  show a stat is t ical ly signif icant  difference between pre (3821.9 

- 484.9 N) and post (3769.6 ± 468.4 N) fatigue conditions (p = 0.543). 

There were some statistically significant (p < 0.05) kinematic changes that occurred during 

fatigue that were relatively consistent across subjects (Table I). These variables were all measured at 

the time of peak L5/S1 compression. Vertical load acceleration increased in 12 of the 13 subjects and 

trunk angular acceleration increased in 11 of the 13 subjects when they became fatigued. On average, 

vertical load acceleration increased by 28% (2.5 ± 2.2 nvs'2 vs 3.2 ± 2.9 m*s :) and trunk angular 

acceleration increased by 51% (138.7 ± 74.3 deg*s' :  vs 209.6 ± 115.4 deg»s :). In addition, horizontal 
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increased in ~ of the 13 subjects when they became fatigued. Relative to the L5 SI joint, the load 

trajectory was 3 cm closer horizontally (0.57 ± 0.04 m vs 0.54 ± 0.04 m) and 2 cm higher (0.35 = 0.04 

m vs 0.37 = 0.07 m) during the fatigue condition. The sacral angle and the postural index did not 

show statistical!) significant changes with fatigue. 

There was no statistically significant difference in peak compressive force: however. tl\e of 

the subjects showed a 7.4% increase in peak compressive forces (3664.3 = 195.3 N xs 3935.3 - 2~l .5 

N ) (Table 2) while the other eight subjects showed a 6.5% decrease (3920.4 = 593.6 N \s 3666.0 = 

549.5 N ) ( Table 3 ). There was little difference between these two groups in mass ( "8.8 = 13.6 kg x s 

"6.0 r 1 3.4 kg) or height (. 1.8 = 0.1 vs 1.8 = 0.1 in). However, the group that increased peak 

compressixe forces lifted, an average. 35.0 ± 24.1 minutes while the group that decreased peak 

compressixe forces lifted, an average. 17.8 ± 1 1.2 minutes. Subjects that increased peak compressixe 

forces tended to have greater increases in vertical load acceleration (54.2%) than did subjects hax ing 

decreased peak compressixe forces ( 16.0%). They also maintained their sacral angle during fatigue 

(<)3.0 - 1~.6 degrees xs 62.4 = 15.4 degrees) while the subjects that decreased peak compressive 

forces tended to increase their sacral angles (50.6 ± 12.7 degrees vs 55.0 = 10.4 degrees). Another 

difference between these groups was the postural index. Subjects that increased peak compressive 

forces decreased the postural index from 0.50 ± 0.22 during pre fatigue to 0.45 = 0.21 during post 

fatigue, indicating a lifting style that is shifting from squat to stoop on the continuum. Subjects that 

decreased peak compressive forces during fatigue showed a much smaller shift (0.65 = (). 14 in pre 

fatigue vs 0.64 ± 0.14 in post fatigue). 

Discussion 

This study used a dynamic biomechanical model of lifting to predict changes in kinematic 

and kinetic data obtained under conditions of pre and post fatigue. The purpose w as to examine the 
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mechanical stresses (compressive forces) on the lower back of subjects performing repetitive lifting 

tasks until fatigued. It was hypothesized that subjects would have individual strategies to deal with 

fatigue. The results showed that the individual lifting strategies changed during fatigue and resulted in 

increased peak compressive forces in some subjects and decreased peak compressive forces in other;.. 

Repeated lifts of a 10 kg load produced fatigue in most subjects within I hour. In I I of the 13 

subjects, the discomfort associated with repeatedly lifting the load was of a great enough magnitude 

to be verv near to causing a voluntary cessation of lifting (9 out of 10 on a discomfort scale). The two 

subjects that did not reach this level of discomfort did reach 8 out of 10 and were therefore considered 

adequately fatigued to include in the study. Most of the subjects ( 11 out of 13) indicated that back 

discomfort was the limiting factor in the duration of the lifting session. One possible source of the 

discomfort was fatigue in the lower back muscles. Previous studies have shown that median 

frequencv decreases and the RMS amplitude of the EMG increases (van Dieen. et al.. 1993. Zuniga 

and Simon. 1969). when muscles become fatigued. The EMG results in this studv are consistent with 

muscular fatigue in the muscle group that extends the back at the level of L5'SI. There are problems 

w itli this t> pe of analv sis. There is no guarantee that the motion that is occurring during the pre-

fatigue is the same as the motion during the post fatigue. In. fact we have demonstrated that there are 

kinematic and kinetic changes that occurring during fatigue. It is difficult to attribute the changes in 

EMG. especially the amplitude changes, to local muscular fatigue when so many other factors are 

changing. It can be noted however, that the increased RMS amplitude in the EMG occurred in spite of 

a reduction in muscle force of approximately 36 N (pre-fatigue: 3529.4 ± 483.9 N: post-fatigue 

3493.5 - 484.6 N). This fact, along with the agreement in the spectral composition and the RPE 

scores provide evidence that the subjects were fatigued. 

The model used in this study produced results consistent with previous research. Lifting 

research often focuses on L5/S1 moments rather than L5/SI compressive forces. Schipplein et al. 

(1990) showed peak moments at L5/SI to be about 245 N*m while lifting a 10 kg load, de Looze et 
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al. ( 1992) reported peak moment values at L5/S1 ranging from 174 to 257 N»m for a 18.8 kg load. In 

the present study, moment values at the time of the peak compressive forces at L5 S1 ranged from 

162 to 26" Vm while lifting alO kg load during the pre-fatigue condition. Chen (2000) focused on 

the peak compressive forces at L5ZS1 and found that lifting a 10 kg load produced an average value of 

3690 N for subjects with an average mass of 67 kg. The mean peak compressive force at L5 SI for 

subjects in the current study (average mass: 77 kg) was 3820 N while lifting a 10 kg load during the 

pre-fatigue condition. Subjects did not show a statistically significant change in peak compressive 

force during fatigue but did show some changes in kinematics during the time of the peak 

compressive force. Accelerations of the load and the trunk increased with fatigue. Other studies have 

also shown increased accelerations during fatigue (Bonato. et al.. 2002. Chen. 2000). We hypothesize 

that these increased accelerations are due to an attempt to compensate for decreased muscle force 

production by recruitment of higher threshold motor units. The motor unit pool during the pre-fatigue 

condition will be composed of relatively low threshold motor units when lifting a light load. As the 

force producing ability of these motor units decreases additional motor units must be recruited. The 

motor unit pool during fatigue will then be composed of motor units with a higher threshold: they will 

hav e a greater number of fibers per motor unit and thus less precision; and they will have a greater 

rate of tension development. It is therefore likely that the motor units in the latter stages of fatigue 

produce greater accelerations than those in pre-fatigued muscle. The load also showed greater 

displacement prior to reaching the peak compressive force during the fatigue. The greater peak 

accelerations were likely responsible for these results. The greater accelerations imply greater 

velocity changes, which imply greater position changes. 

Increasing the load acceleration and the angular acceleration of the trunk should have 

increased the peak compressive force, however 8 of the 13 subjects actually decreased peak 

compressive forces during fatigue. There are several reasons why this occurred. First, the subjects that 

decreased peak compressive forces during fatigue showed lower magnitude increases in the load 
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acceleration (0.4 m*s"~ vs 1.3 m*s ") and trunk acceleration (56.8 deges" vs 93.2 deg*s" ). Second, 

these subjects also tended to increase the sacral angle during fatigue. This does not decrease spinal 

loading, but it does shift the loading from a compressive force to a shear force. Third, these subjects 

were better able to maintain posture during fatigue. The subjects that increased peak compressive 

forces began lifting in more of a stooped posture and had a greater shift toward even more of a 

stooped posture when they became fatigued. This shift toward a stooped posture is a common 

adaptation during fatigue and has been associated with increased compressiv e forces ( Trafimow. et 

al.. 1993. Chen. 2000). 

Conclusions 

Subjects that increased peak compressive forces when fatigued used more of a stooped 

posture. Weight training could be done to develop greater fatigue resistance in the muscles of the 

lower back to delav lifters from shifting to a more stooped posture. Subjects also increased the 

accelerations of the load and thus "jerked" the load off the ground during fatigue. Some of the 

subjects were able to decrease peak compressive forces while other subjects showed an increase in 

peak compressive forces. It was hypothesized that the increased accelerations were caused hv a shift 

from the small fatigue resistant motor units used during the initiation of lifting to the large, lower-

precision motor units used during fatigue. If this is the case, then appropriate training of the small 

motor units should delay the onset of fatigue and thus improve lifting performance. 

Other methods that could help prevent the effects of repeated lifts are alternating the location 

of muscle stresses and distributing the muscle stresses over many joints. Fogleman and Smith ( 1995 ) 

and Resnick ( 1996) suggested variation in the strategies used by different individuals during lifting 

tasks. So. it is suggested that the strategy of distributing stresses among joints ma> also be a proper 

method of protecting the other joints from injury. Distribution of the muscle stresses overjoints could 

be accomplished by using the squat technique, which may distribute the stresses over more joints than 
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the stoop technique and thus reduce the peak stresses. In other words, individuals should lift \\ ith the 

entire body rather than only with specific joints. 
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Table 3.1: Peak compressive forces at L5/S1 joint, kinematic and kinetic variables at the values of the 

peak compressive forces, from all subjects. 

Variables Pre Fatigue Post Fatigue P 
Mean Stdev Mean Stdev value 

Peak Compressive Forces (N) 3821.9 ± 484.9 3769.6 ± 468.4 0.543 

Vertical acceleration of the load (m*s~~) 2.5 ±2.2 3.2 = 2.9 0.004 

Angular acceleration of the trunk (deg»s'~) 138.7 ±74.3 209.6 = 115.4 0.005 

Horizontal distance between load and L5/SI (m) 0.57 ±0.04 0.54 -0.04 0.002 

Height of the load (m) 0.35 ±0.04 0.37 -0.07 0.03" 

Sacral angle (deg) 55.4 ± 15.5 57.8 = 12.6 0.4 I " 

Postural Index 0.59 ±0.18 0.57 = 0.18 0.415 
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Table 3 .2: Mean values from 10 pre fatigue and 10 post fatigue lifts of the 5 subjects that increased 
their peak compressive forces. Kinematic and kinetic variables were the values at the peak 

compressive forces. 

Variables Pre Fatigue Post Fatigue 

Mean Stdev Mean Stdev 

Peak Compressive Forces (N) 3664.3 ± 195.3 3935.3 = 271.5 

Vertical acceleration of the load (m*s~~) 2.4 = 0.6 3.7 = 0.8 

Angular acceleration of the trunk (deg*s"~) 196.3 = 73.4 289.5 = 120» 

Horizontal distance between load and L5/S1 (m) 0.56 ±0.04 0.52 = 0.01 

Height of the load (m) 0.36 ft o
 

o
 

1J
 

0.41 r ().()" 

Sacral angle ( deg) 63.0 ± 17.6 62.4 = 15.4 

Postural Index 0.50 = 0.22 0.45 = 0.21 
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Tabic 3.3: Mean values from 10 pre fatigue and 10 post fatigue lifts of the 8 subjects that decreased 

their peak compressive forces. Kinematic and kinetic variables were the values at the peak 
compressive forces. 

Variables Pre Fatigue Post Fatigue 

Mean Stdev Mean Stdev 

Peak Compressive Forces (N) 3920.4 ± 593.6 3666.0 = 549.5 

Vertical acceleration of the load (m*s'~) 2.5 = 0.6 2.9 = ()." 

Angular acceleration of the trunk (deg'S ") 102.8 = 50 8 159.6 = 83.7 

Horizontal distance between load and L5/SI (m) 0.57 = 0.04 0.55 = 0.04 

1 (eight of the load (m) 0.34 = 0.01 0.35 = 0.03 

Sacral angle (deg) 50.6 = 12.7 55.0 = 10.4 

Postural Index 0.65 = 0.14 0.64 = 0.14 
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Figure 3.1: Example of peak compressive forces at L5/S1 joint during pre fatigue condition. 
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Figure 3.2: The peak compressive forces at L5/S1 joint for all subjects between the pre and post 
fatigue conditions. 
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CHAPTER 4: INFLUENCE OF PREVIOUS LIFTS AND KNOWLEDGE OF LOAD 
MAGNITUDE ON L5/S1 COMPRESSIVE FORCE DURING MANUAL LIFTING 

A paper to be submitted in the International Journal of Industrial Ergonomics 

Budihardjo, I \ Patterson. Pa and Derrick. TR b 

'' Department of Industrial and Manufacturing Systems Engineering. Iowa State University 
h Department of Health and Human Performance. Iowa State University 

Abstract 

This study investigated stresses on the lower back and adaptations of the lifts as effects of 

magnitude and knowledge of loads. Twenty male subjects performed four series of lifts on a container 

supporting either a light load (3 kg) or heavy load ( 17 kg). In two of the series the subjects knew the 

mass of the load and in another two they did not. When the light load was unknow n, subjects 

overestimated the load, increasing the peak compressive forces at L5/S1 significantly. This increase 

was the result of an increased vertical acceleration of load and a farther displacement of load from 

1.5 SI. Know ledge of the mass did not significantly alter the peak compressive forces while lifting a 

Iicaw load, but there was a reduction in vertical acceleration of load when load was unknown as 

subjects underestimated the load. Subjects were able to adapt when lifting an unknown load and the 

greatest adaptation occurred between the initial lift and subsequent lifts. Regardless of the knowledge 

of load, subjects adapted to the light load by reducing the stresses on the lower back. The subjects 

brought the load closer to lower back after the initial lift and overestimated the load during the 

unknown condition. When a heavy load was unknown, subjects adapted their lifts by increasing the 

stresses on lower back by a tendency to move the load farther from the lower back and increasing the 

vertical acceleration of load due to the underestimation of the load. When lifting a heavy load under 

both conditions, subjects de-emphasized the use of the back and increased the use of their legs. 
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Relevance to industry 

The actual lifting activ ities involve manual handling of loads with unknow n mass. This studv 

investigated stresses on the lower back and adaptations of lift technique based on load magnitude and 

knowledge of the loads. The results provide meaningful information for lifting job design and the 

prevention of lower back injuries. 

Keywords: lifting, compressive forces, load knowledge, adapt, subsequent lifts. 

Introduction 

The high occurrence of lower back injuries has developed into a serious health problem in 

industry. Manual material handling, especially lifting loads, is the most frequently reported cause of 

the lower back injuries (Chaffin and Park. 1973. Klein et al.. 1984). This is because the act of lifting 

generates high mechanical stresses on musculoskeletal structures in the lower back. In some lifting 

|ob>. Mich as refuse collecting and luggage dispatching, the workers often have no know ledge of the 

load magnitude prior to the actual lift. While starting a lift, workers can sometimes anticipate the 

necessarv effort based on previous experience. However, this is not always possible because the 

weight of load is often unknown. When lifting an unexpectedly light load the initial effort max be too 

large. I his results in a tendency to move the body and load upward rapidly in an uncontrolled manner 

(Butler et al.. 1993. Patterson et al.. 1987). Conversely, a heavy load can be underestimated, causing 

inappropriate body positioning resulted the development of unsafe forces in the body. 

Epidemiological studies have shown that workers exerting sudden unexpected maximal efforts are 

particularly vulnerable to low back disorders (Magora, 1973). 

The evaluation of manual material handling tasks is often used to reduce the risk of low back 

injury at the workplace. The National Institute for Occupational Safety and Health (NIOSH. 1981 ) 

provides a method for computing a weight limit for manual lifting, in which several load-determining 

factors are involved. The factors are load location, the displacement of the load, the asymmetric angle 
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of lifting, lifting frequency, and the coupling between the load and hands. However, load know ledge 

is a factor that is not accounted for in this method or in any other evaluation approach. 

Previous research has shown that knowledge of load both known and unknown can influence 

lifting kinematics and the peak moment and forces at lower back during manual lifting tasks. 

Patterson el at. ( 1987) studied the effect of load knowledge on stresses at the L4 L5 joint in lifting of 

three different loads (6.8. 10.2. and 13.8 kg). They observed a general tendency towards higher peak 

moments in the condition when the actual mass of the load was unknown. This study also compared 

the effect of load know ledge to different types of lifters, experienced and novice lifters. The results 

showed that the experienced lifters had lower stress levels at L4/L5 than did the novice lifters due to 

the lifting technique. 

Butler et al. ( 1993) investigated the peak moments at the L5/S1 joint as the function of two 

different lifting conditions: with and w ithout knowledge of four different weights ( no weight. 150. 

25(1 and 300 N ). The peak moment at L5/SI joint for the 0-N (light load) condition was increased 

significantly in the without knowledge condition as compared to the with knowledge condition. At the 

other weights, no significant difference was found, except at 150 N where a significant increase in the 

speed of trunk extension under the unknown weight condition occurred. This study w as different from 

Patterson et al. ( 1987) due to the magnitude of the loads used, comparing an extremely light (0 N) 

weight to heavy (300 N) weight. 

de Looze et al. (2000) analyzed the low back moments in lifting as an effect of absence of 

load knowledge. Subjects in this study were only informed of the range of masses (6.5 - 16.5 kg) to 

be lifted for the unknown condition. The results found the peak L5/S1 moments in the unknown 

condition were significantly increased than in the known condition (actual mass to be lifted). The 

difference of this study from previous studies was the definition of unknown condition. Pre\ ious 

studies defined the unknown condition as a condition that subjects did not know the magnitude of the 
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mass ulien lifting the load. In this study, the unknown condition was defined as condition in which 

subjects knew only the range of masses, not the actual mass. 

These researches investigated the effect of change an unexpected load caused after performed 

a series of lifts w ith an expected load during lifting. Actually, the unexpected load condition was 

different from the unknown load condition. The unknown load condition during lifting was a 

condition in w hich indiv iduals did not know the mass of load to lift. The unexpected load condition 

during lifting was the condition in which individuals did not know when the expected load being 

lifted would unexpectedly be changed. The unknown load condition seemed to create more realistic 

lifting tasks than did the unexpected load condition. 

Commissaris and Toussaint ( 1997) studied lifting tasks having a sudden change of light mass 

<6 kg) after a long series of a heavy mass lifting ( 16 kg). The study found that the moment at L5 SI 

joint was significantly different (a decrease) between lifting both masses until 150 m s after the box 

lift-off from the ground. 

der Burg and Dieen (2001 ) studied the lifting tasks in which the load was unexpectedly 

changed. Subjects performed a series of lifting movements of light loads (either 1.6 or 6.6 kg), then 

suddenly a mass of 10 kg heavier (either I 1.6 or 16.6 kg) was presented. The peak L5 S 1 moments 

and peak compressive forces were not significantly different when the subjects were lifting either an 

expected (light load) or an unexpectedly heavier load. The difference of this study from the previous 

study is that the previous study inserted a lighter unexpected mass during a series of lifts of heavy 

mass, while this study inserted a heavier unexpected mass during a series of lifts of light mass. 

In all of these studies, subjects performed a single lift for each condition, known and 

unknown load magnitude. The kinematics and kinetics differences between conditions were then 

analy zed. None of these studies the investigated the changes that would occur to subsequent lifts as an 

effect of load knowledge when lifting either a light or heavy load. Almost all of these studies found 

that lifting an object without knowing the magnitude of the load tended to result in increase I umbo-
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sacral stresses. These studies also showed the knowledge of the load could be used as a factor to 

change lifting mechanics. Very little information is currently available on how subjects adapt to those 

changes during subsequent lifts for both lifting a known and an unknown load. Based on these 

situations, the current study is developed to answer the following questions: 

1. Are the differences in compressive forces at L5/S1 the same between lifting of light load (3 

kg) and heavy load ( 17 kg) under known and unknown conditions? 

2. How do subjects adapt during subsequent lifts when the magnitude of light load (3 kg) was 

known or unknown? 

3. How do subjects adapt during the subsequent lifts when the magnitude of heavy load ( 17 

kg) was known or unknown? 

Methods 

Subjects 

Tw enty healthy young male subjects with no history of back injuries participated in this 

study. The mean age was 21 ± 1.9 years: body mass was 84 ± 13.9 kg; and body height was 1.8 = 

0.08 m. The subjects signed informed consent to participate in this study in accordance with 

university policy. Prior to the start of the study, subjects were familiarized with the experiment 

protocol. 

Protocol 

Each subject was asked to lift a load under 4 different conditions. Each condition consisted of 

a series of 5 lifts in which a light (3 kg) or a heavy (17 kg) load was lifted. The mass of the load wa.s 

either known or unknown during the first lift of each series. Each condition was performed tw o times, 

for a total of 40 lifts. Before performing the lifting experiment, subjects practiced lifting each of the 
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masses. During each series a lift was performed every 6 seconds based on an audible tone. The 

subjects were allowed as much as rest as needed between conditions. 

The container had handles located 12 cm off the ground (33 cm length. 19 cm w idth. 12 cm 

height) and supported the 3 kg or 17 kg masses. The center of the container was positioned 

approximately 26 cm horizontally from the subject's ankles. 

Each subject wore shoes during the lifting experiment. The right foot of each subject was 

placed on the force platform during the lifting experiment. Subjects began each series of lifts from the 

standing position, then instructed to bend down, grab the container and returned to a standing position 

as they lifted the container. The container was then returned to the initial position. Subjects were 

encouraged to perform lifts at a 'normal' speed and use a natural lifting technique. 

Model 

Lifting motion was captured using four Peak Video and Analog Motion Measurement System 

( Peak Performance Technologies. Inc.. Englewood. CO) video cameras. The video camera sy stem 

measured the three-dimensional position of nine reflective markers during the motion. The position of 

each marker was digitized at 120 Hz and low-pass filtered using a fourth-order (zero lag) Butterwoth 

filter using a 2 Hz cut-off frequency. The markers were placed on the second toe. the posterior point 

of the heel, the lateral malleolus, the midpoint of the lateral joint line of the knee, the glenohuineral 

joint, the pelvis (3 markers), and a additional marker on the container. (See a detailed explanation of 

the placement markers in pelvic area in chapter 3). 

A strain-gage force platform (Advanced Mechanical Technology. Inc.. Newton. MA model 

OR 6-6 2000) was used to determine the location, direction and magnitude of external ground 

reaction forces. The force platform signals were sampled at 120 Hz and synchronized with the 

kinematic data using the event and video control unit (Peak Performance Technologies. Inc.. 

Englewood. CO). 
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A five-segment rigid body model was used to estimate internal forces. The segments used 

were the foot. leg. thigh, pelvis and one segment above the L5/SI joint (head/arms/trunk). It was 

assumed that these segments were connected by hinge joints, namely the ankle, knee. hip. and L5 SI. 

Each segment was assumed to have a fixed-point mass and constant moment of inertia (See a detailed 

explanation of segment's location of center mass, moment inertia and segment's mass in chapter 3 ). 

The reaction forces and moments at each joint were calculated using inverse dynamics for the 

standard link segment model (Winter. 1990). Newtonian equations of motion were applied to each 

indix idual segment starting at the foot. Reaction forces and joint moments were then estimated for the 

proximal end of each segment and the end of process was then repeated for the next proximal 

segment in the model. Equations of motion and the anthropometric model were implemented using a 

custom analysis program. (See a detailed explanation of the compressive forces at L5/SI in chapter 

;  i 

Data analysis 

The independent variables were two load magnitudes (3 kg-light and 17 kg-heaxx ) and two 

levels of load knowledge (known and unknown). The main dependent variable was the peak 

compressive forces at the L5/S1 joint. The timing of the peak compressive forces was observed to 

occur just after the load left the ground. To further analyze the causes of increased or decreased peak 

compressive forces additional variables were calculated at the time of the peak compressive force. 

These variables included the sacral angle, the vertical acceleration of the load, the horizontal distance 

between the center of load and L5/SI joint, and the postural index. The postural index was defined as 

the ratio of the knee angle to the sum of the hip and L5/SI angles. 

Means and standard deviations were calculated for each of the five lifts conditions. The 

interactions between load magnitude (light and heavy) and knowledge of the load (known and 

unknown) were tested using repeated measures analysis of variance. Helmert contrasts were utilized 
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to test how the subjects adapted lifting style when the light or heavy load was lifted in the known or 

unknown condition. These contrasts were used to compare each lift to the mean of subsequent lifts 

using an alpha level of 0.05 as the threshold for detecting statistical differences. 

Results 

The statistical interaction test between magnitude (light and heavy ) and knowledge of the 

load (known and unknown) was performed to determine if knowledge of the load magnitude had the 

same effect on lifting a light weight as it did on lifting a heavy weight. These tests were performed 

only on the first lift of each series because after the first lift the load magnitude w as not truly 

unknown. There was a significant interaction in peak compressive forces between the mass of the 

load and knowledge of the load magnitude (p = 0.004). While lifting a light load, the peak 

c o m p r e s s i v e  f o r c e s  a t  L 5 / S I  ( f i g u r e  1  )  i n c r e a s e d  w h e n  t h e  l o a d  w a s  u n k n o w n  ( 3 6 2 4 . 3  -  8 8 6 . 8  N v s  

3964.2 r 1 104.6 N). While lifting a heavy load the peak compressive forces at L5 SI (figure I ) 

decreased when the load was unknown (4931.2 ± 1213.3 N vs 4770.4 ± 1000.9 N). 

There were significant kinematic changes that occurred when the load magnitude was 

unknown (table 1 ). The vertical acceleration of the load was increased by 17% (3.5 = 0.9 nvs :  vs 4.1 

- 1.3 nvs'2) when the light load was unknown, but it was decreased by 19% (2.5 ± 1.3 nvs :  vs 2.1 -

0.9 nvs ) when the heavy load was unknown. The load was held further from L5/S1 in the horizontal 

direction (0.49 ± 0.04 m vs 0.51 ± 0.04 m) when the light load was unknown. However, knowledge of 

the load did not appear to influence this horizontal distance while lifting the heavy load (0.45 = 0.09 

m vs 0.43 ± 0.09 m). The postural index was also not influenced by knowledge of the light load (0.52 

= 0.13 vs 0.54 ± 0.18). but decreased by 0.04 when the heavy load was unknown (0.51 = 0.18 vs 0.47 

= 0.18). The sacral angle decreased by 2.7 degrees (56.8 ± 13.9 deg vs 54.1 ± 15.2 deg) when the 

light load was unknown, but there was no effect of load knowledge while lifting the heavy loads (55.0 

±13.4 deg vs 57.3 ± 14.3 deg). 
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To analyze how subjects adapted during each series of 5 lifts, each lift was compared to the 

mean of subsequent lifts. When the light load was known the first lift was different from the others in 

peak compressive force and horizontal distance between the load and L5/SI (table 2). In addition, the 

fourth lift was different from the fifth lift in the vertical acceleration of the load (table 2). When the 

light load was lifted, the peak compressive forces at L5/S1 (figure 2) of the first lift xvas greater than 

tluu of subsequent lifts. There were also some statistically significant kinematic changes that 

occurred during the lifts. The horizontal displacement of the load relative to L5/S1 of the first lift was 

increased by compared to the subsequent lifts. The only statistically significant difference in the 

\ ertical acceleration of the know n light load was a decrease of 0.3 nvs " betw een the 4"' and the 5" :  

lift. I he sacral angle and the postural index did not significantly change during the lifts. 

\\ hen the light load was unknown the first lift was different from the others in peak 

compressiv e force, horizontal distance and vertical acceleration of the load (table 2). In addition, the 

third lift was different from subsequent lifts in peak compressive force with the second lift was 

different from subsequent lifts in the horizontal distance (table 2). The peak compressive forces at 

1.5 SI i figure 2 ) of the first lift were greater than subsequent lifts. This drop in peak compressive 

force was accompanied by kinematic changes in the lifts. These included a decrease in the horizontal 

distance between the load and L5/S1 of 0.03 m and a decrease in the vertical accelerations of the load 

of I nvs " between the first and second lifts (table 2). The sacral angle and the postural index did not 

significantly change during the lifts. 

When the heavy load was known the peak compressive forces showed no significant 

differences between the first lift and subsequent lifts (figure 3). There were a couple of kinematic 

changes that occurred between the first lift and subsequent lifts. There were some statistically 

significant kinematic changes that occurred during the lifts (table 3). The postural index of the first 

lift was statistically smaller than the subsequent lifts. The sacral angle of the first lift was statistically 
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greater than the subsequent lifts. However, the vertical acceleration of the load and the horizontal 

displacement of load relative to L5/S1 did not significantly change during the lifts. 

When the heavy load was unknown the peak compressive forces, horizontal distance between 

the load and L5 S1. the vertical acceleration of the load, the sacral angle and the postural index 

showed statistically significant changes between the first lift and subsequent lifts. The peak 

compressive forces at L5/SI of the first lift were less than the subsequent lifts (figure 3). The vertical 

acceleration of the load and the distance between the load and L5/S1 both decreased after the first lift, 

t he sacral angle of the first lift was greater than the subsequent lifts and the postural index of the first 

lift was smaller than the subsequent lifts 

Discussion 

This study applied a dynamic biomechanical model of lifting to estimate changes in 

kinematic and kinetic data that occurred with the effects of load knowledge and previous lifts. The 

purpose of this study was to examine the mechanical stresses on the lower back when subjects were 

lifting a load (light or heavy) with known or unknown magnitude and to analyze how they adapted 

during a series of 5 lifts. 

Lifting studies frequently focus on L5/SI moments rather than L5/SI compressive forces, de 

Looze et al. ( 1992) reported the mean peak moment at L5/S1 ranged from 220.1 = 25.2 N*m for an 

18.8-kg load and an average subject's mass of 76 kg. The present study showed the moment values at 

the time of the peak compressive forces at L5/SI ranged from 194.5 ± 11.4 N»m while lifting a 3-kg 

load and ranged from 269.4 ± 13.0 N»m while lifting a 17-kg load during the known conditions. Chen 

(2000) focused on the peak compressive forces at L5/S1 and showed that lifting a 5-kg load generated 

an average value of 3300 ± 370 N. average value of 4490 ± 520 N while lifting a 15-kg load, and 

average value of 5050 ± 500 N while lifting a 20-kg load for subjects with an average mass of 6™ kg. 

During the known conditions, the mean peak compressive forces at L5/SI in the current study 
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(average subject mass: 84 kg) were 3535 = 951 N while lifting a 3-kg load and 4896 = 1110 N while 

lifting a 17-kg load. 

In this study, while lifting light load (3 kg) and the mass was unknown subjects increased the 

peak compressive forces at L5/S1 while lifting light load (3 kg). This result supports previous studies 

which found that lifting a load under the unknown condition produces increased stresses on the lower 

back, especially for a light load (Patterson et al.. 1987. Butler et al.. 1993). However, the knowledge 

of the mass did not significantly change the peak compressive forces at L5/S1 while lifting a heavy 

load ( 17 kg). A previous study found that, for heavy loads, the lumbo-sacral moments were not 

influenced appreciably by whether the load magnitude was known or not (Butler et al.. 1993). Thus, 

there were differences in the peak compressive forces at L5/SI while subjects were lifting a light load 

or a heavy load under the known or unknown condition. This was exemplified by the significant 

interaction between the mass and knowledge of the mass (figure I ). 

While preparing to lift with the unknown load (light and heavy), subjects had to estimate the 

magnitude of the load. If a light load were estimated to be heavier load, subjects would overestimate 

the load. If it was a heavy load, but subjects estimated it as a light load, they underestimate the load. 

When subjects overestimate the load, the lifting technique generates a greater than normal 

accélération. Likew ise an underestimated load would show reduced accelerations. When the light 

load was unknown, the vertical acceleration of the load was increased during the first trial. This result 

agrees with previous study (Butler et al., 1993) that lifting light unknown weights resulted in an 

overestimation of the load. When the heavy load was unknown, the vertical acceleration of the load 

was reduced, suggesting an underestimation of the load. However, the previous study ( Butler et al.. 

1993) found lifting of heavy loads (15, 25 and 30 kg) did not show significant changes in the 

maximum velocity of the load. 

When overestimating the load, subjects generated a rapid lifting movement. The rapid mov ement 

produced an uncontrolled movement ("jerk"), a sudden pull on the load, with rapid acceleration of the 
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peiv is segment w ill reduce the sacral angle. In this study, while lifting the unknown light load the 

sacral angle was significantly reduced, agreeing with Butler et al. (1993). When the light load was 

unknow n, the load was located farther from L5/S1. The greater accelerations were likely responsible 

for this result, as greater accelerations imply greater velocity changes, which imply greater position 

changes. 

Previous studies have not considered how individuals adapt during subsequent lifts when 

lifting light or heavy loads for situations in which the mass is known or unknown. Typically only a 

single lift is investigated rather than a series of lifts. In the current study, subsequent lifts were 

analyzed to see how subjects adapt to lifting a light or a heavy load under the known and unknown 

conditions. Subjects adapted more when lifting an unknown load as compared to a known load. This 

is because subjects had no know ledge of the mass during the initial lift in the unknow n condition. 

After that, subjects made kinematic and kinetic adaptations during subsequent lifts based on the 

experience of the first lift. In this current study, the greatest adaptations occurred between the initial 

lift and the subsequent lifts. 

Regardless of the know ledge of the mass, subjects adapted to the light load by reducing the 

stresses on the lower back (table 2). This was because subjects tended to move the load closer to 

1.5 S1 during the subsequent lifts regardless of knowing the mass of load. When the light load was 

unknown, greater reduction in the lower back stresses occurred. Part of this reduction was due to 

overestimating the load during the first lift of the unknown condition. Evidence for this 

overestimation was found in the increased vertical acceleration of the load during the first lift. 

Subjects did not adapt the lifting technique (postural index) during the light lifts. This was probably 

because the light mass did not require any postural adjustment during this short period of lifting. 

While lifting the light load there were few adaptations that occurred after the second lift (table 2). 
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When a heavy load was unknown, subjects adapted during subsequent lifts by increasing the 

stresses on the lower back. This was because subjects tended to move the load farther to L5 S1. Part 

of this increase was due to underestimating the load during the first lift of the unknown condition. 

The evidence of this underestimation could be found in the decreased vertical acceleration of the load 

during the first lift. While lifting a heavy load under known condition, subjects did not change the 

stresses on the lower back during the lifts. This was because although subjects tended to reduce the 

sacral angle during the lifts (table 3). they also shifted toward a squat technique. The squat (knee) 

technique has been shown to generate less biomechanical stresses on the lower back than the stoop 

(back) technique (Andersson and Chaffin. 1986). However, the reduction of sacral angle would 

increase the compressive forces on the lower back (Chaffin, et al.. 1999). Regardless of the 

knowledge of the mass, subjects de-emphasized use of the back and increased use of the legs. This 

can he seen in the increase of the postural index (table 3). 

Conclusion 

The present study showed individuals lift differently when they knew and did not know the 

magnitude of the load being lifted. Knowing the magnitude of the load influenced both lifting a light 

and heavy load. While lifting the light load without knowing the magnitude, individuals tended to 

overestimate the load. The overestimation generated a rapid vertical acceleration of the load that 

increased the stresses on lower back. On other hand, while lifting the heavy load without knowing the 

magnitude, individuals tended to underestimate the load. The underestimation reduced the vertical 

acceleration of the load, decreasing the stresses on the lower back. 

The current study also showed individuals made changes (adaptations) during the subsequent 

lifts. Individuals adapted the lifts more when lifting an unknown load. The greatest adaptations 

occurred between the initial and the subsequent lifts. Individuals adapted the lifts differently 

depending on the magnitude of the load. While lifting a light load, regardless of the knowledge of the 
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mass, individuals adapted the subsequent lifts by reducing the stresses on the lower back. Regardless 

of the knowledge of the mass when lifting a heavy load, individuals adapted the subsequent lifts b\ 

increasing the use of the legs. 

To prevent the risks of lower back injury due to the misinterpretations of load being lifted 

under the unknown condition (overestimate or underestimate), the information of the mass should be 

given as clear as possible. Providing a label/mark on the container that displays the mass (weight) is a 

good solution to inform people the magnitude of the load. If an exact amount of mass is not available, 

the approximately masses (range of the masses) of the loads should still be provided, so that people 

can estimate the magnitude of the loads before lifting. 

People making changes (adaptations) that reduce the stresses on the lower back during the lifts, 

especially when lifting a heavy mass. 
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Table 4.1 : The first lifts (means ± standard deviations) of light (3 kg) and heavv (17 kg) load u hen 

the mass was known and unknown. 

Light known Light unknown Heavy known Heavy unknown 

Peak compressive forces (N) 3624.3 3964.2 493 1.2 4770.4 

± 886.8 = 1104.6 = 1213.3 = 1000.9 

Horizontal distance between 0.49 0.51 0.45 0.43 

the load and L5 SI (m) = 0.04 = 0.04 = 0.09 = 0.09 

Vertical acceleration of the load (nvs"") 3.5 4.1 2.5 2.1 

= 0.9 = 1.3 = 1.3 = 0.9 

Sacral angle (deg) 56.8 54.1 55.0 57.3 

= 13.9 = 15.2 = 13.4 = 14.3 

Postural Index 0.52 0.54 0.51 0.47 

±0.13 = 0.18 = 0.18 - 0.18 
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Table 4.2: The five lifts (means ± standard deviations) of light (3 kg) load when the mass was know n 

and unknown. 

Light known 1 2 3 4 5 Sig." 

Peak compressive forces (N) 3624.3 3509.4 3483.3 3555.7 3499.4 1 

= 886.8 = 944.5 = 946.3 = 953.9 = 1021.9 

Horizontal distance between 0.49 0.48 0.47 0.47 0.48 

the load and L5/SI (m) = 0 04 = 0.04 = 0.04 = 0.04 = 0.04 1 

Vertical acceleration of the load (nvs"") 3.5 3.4 3.3 3.6 3.3 4 
= 0.9 = 0.9 = 0.9 = 0.9 = 0.9 

Sacral angle (deg) 56.8 56.9 57.4 56.3 55.6 

= 13.9 = 15.2 = 14.8 = 15.2 - 18.S 

Postural Index 0.52 0.52 0.51 0.52 0.52 

= 0.13 = 0.18 = 0.18 = 0.18 r 0.18 

Light unknown 1 2 3 4 5 Sig.-

Peak compressive forces (N) 3964.2 3557.9 3606.9 3521.7 3491.1 1.3 
= 1104.6 ± 1037.1 = 1058.6 = 1029.9 = 986.6 

Horizontal distance between 0.51 0.48 0.47 0.46 0.47 1 . 2  

the load and L5 SI (m) = 0.04 ±0.04 = 0.04 = 0.04 = 0.04 

Vertical acceleration of the load (nvs"2) 4.1 3.1 3.4 3.1 3.2 1 
= 1.3 = 0.9 = 0.4 = 0.9 = 0.9 

Sacral angle (deg) 54.1 55.7 56.0 54.7 56.2 

= 15.2 = 15.7 = 16.5 = 15.7 = 16.5 

Postural Index 0.54 0.52 0.53 0.53 0.53 

= 0.18 = 0.18 = 0.18 = 0.18 r  0.18 

* indicates that  the identified lifts are significantly different from the subsequent lifts. 
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Fable 4.3: The five lifts ( means ± standard deviations) of heavy (17 kg) load when the mass was 

know n and unknown. 

Heavy known 1 2 3 4 5 Sis-" 

Peak compressive forces (N) 4931.2 4937.2 4870.5 4862.4 4876.7 

= 1213.3 = 1088.5 ± 1030.8 = 1135.5 = 1082.7 

Horizontal distance between 0.45 0.47 0.46 0.46 0.46 

the load and L5 SI (m) -0.09 = 0.09 = 0.09 = 0.09 = 0.00 

Vertical acceleration of the load (nvs"~) 2.5 2.9 2.9 2.9 2.8 
= 1.3 ± 1.3 = 0.9 = 0.9 = 0.9 

Sacral angle (deg) 55.0 52.2 52.7 51.4 52.9 1 

= 13.4 ± 13.9 ± 13.9 = 14.3 = 15.7 

Postural Index 0.51 0.54 0.54 0.57 0.55 1 

±0.18 ±0.18 ±0.18 = 0.18 = 0.18 

Hcavx unknown 1 2 3 4 5 Sig* 

Peak compressive Forces (N) 4770.4 5025.9 4953.0 4887.9 4958.9 1 

= 1000.9 = 1102.8 = 1186.5 = 1 139.9 = 1298.7 

Horizontal distance between 0.43 0.48 0.47 0.46 0.47 1 

the load and L5 SI (m) = 0.09 ± 0.09 = 0.09 = 0.09 = 0.09 

Vertical acceleration of the load (nvs'2) 2.1 2.9 2.8 2.8 2.8 1 

-0.9 = 0.9 = 0.9 = 0.9 r 0.0 

Sacral angle (deg) 57.3 51.5 51.8 52.5 52.5 1 

r 14.3 = 15.7 = 14.8 = 13.9 % 16.1 

Postural Index 0.47 0.54 0.55 0.55 0.54 1 
= 0.18 = 0.18 = 0.18 = 0.18 = 0.18 

* indicates that the identified lifts are significantly different from the subsequent lifts. 
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Figure 4.1: Peak compressive forces during the first lifts of light load (3 kg) and heavy load (17 kg) 
when the mass was known and unknown. 
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Figure 4.2: Peak compressive forces of the five lifts of light load (3 kg) known and unknown 
conditions. 
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Figure 4.3: Peak compressive forces of the five lifts of the heavy load (17 kg) known and unknown 
conditions. 
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CHAPTER 5: INFLUENCE OF CONSTRAINING BARRIER ON L5/S1 
COMPRESSIVE FORCE DURING MANUAL LIFTING 

A paper to be submitted in the International Journal of Industrial Ergonomics 

Budihardjo. I \ Patterson. P \ and Derrick, TRb 

a Department of Industrial and Manufacturing Systems Engineering. Iowa Stale University 

Department of Health and Human Performance, Iowa State University 

Abstract 

The purpose of this study was to examine the mechanical stresses on the lower back as the 

response of different heights of constraining barrier. Ten male subjects lifted a load from the floor to 

the knuckle height under the non-constrained and the constrained conditions with 4 different heights 

of constraining barrier (0%. 80%. 100%. 120% and 140% of knee height). The constrained condition 

was defined as the condition where a load was placed on the floor behind a certain level of bar. When 

lifting of the constrained conditions, subjects significantly increased the peak compressive forces at 

L5 SI compared to the non-constrained (3868.8 ± 527.5 N. 4175.0 ± 486.0 N. 4162.4 ± 462.3 N. 

4136.0 = 553.1 N. 4079.4 ± 468.9 N for 0%. 80%. 100%, 120% and 140% barrier height conditions 

respectively). The subjects moved the load further from L5/S1 in the horizontal direction when lifting 

during the constrained conditions. While lifting during the constrained conditions subjects generated 

an increase in the sacral angle and a decrease of the knee flexion. In this study, the peak compressive 

forces at L5/S1 showed a statistically significant quadratic trend. However, the magnitude of the 

difference of peak compressive forces during the constrained conditions was small. Future research 

and more data collection of lifting tasks for different heights of barrier are required to emphasize the 

meaning of the quadratic trend of compressive forces. 
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Relevance to industry 

Lifting load over a constraint barrier has implications for many manual material handling 

tasks in industry. The constrained condition increased the peak compressive forces in the lower back 

during lifting due to an increased load displacement and a decreased of the knee flexion. 

Keywords: lifting, lower back injury, compressive forces, constraint barrier. 

Introduction 

Epidemiologic research indicates that lower back pain is a major problem in terms of both 

humans suffering and cost for workers. Manual material handling tasks, especially repetitive lifting, is 

most commonly reported as the cause of back injuries (Chaffin and Park. 1973. Frymoyer et al.. 1983. 

Klein et al.. 1984). This is because the repetitive lifting produces high compressive stresses on the 

back, especially the lower back (Dolan et al.. 1994). which can cause the degeneration on the annulus 

tlbrosus of the intervertebral discs and then cause the lumbar disc to prolapse posteriori} (Adams and 

Mutton. 1983. 1985). 

Researchers have developed a considerable interest in how people apply the motion and 

strategv of lifting and how people control the effect of lifting on the human body (NIOSH. 1981 ). 

These studies that have focused on the stress occurring in the lower back have utilized a 

biomechanical model (de Looze, et al.. 1992, Schipplein et al.. 1990, Tsuang et al.. 1992). In this 

approach, the compressive forces acting on the lower back are estimated based on the reactive forces 

at the L5 S1 intervertebral disc center, knowledge of musculature and the sacral orientation. The 

models assume rigid body segments connected by hinge joints. The magnitude of loads being lifted 

and anthropometric measurements of body segments are required along with know ledge of external 

forces acting on the body. Applying conventional Newtonian equations of motion, the joint reactive 

forces and moments are predicted and L5/S1 compressive forces are calculated. 
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Individuals sometimes require lifting from, and lowering into, industrial bins. These bins 

form a constraint barrier that can serve to restrict the preferred motion of the bod\ and result in 

altered stresses. Lifting tasks with different barrier heights can influence lifting kinematics, moments, 

and compressive forces at L5/S1 (the joint between the fifth lumbar and the first sacral vertebrae) 

during manual lifting. iVlcKean and Potvin (2001 ) studied the effects of a simulated industrial bin on 

lifting and lowering posture and trunk muscle activity (EMG). The wall height of the simulated 

industrial bin was constructed at 120% of the average male/female knee height. Male subjects lifted a 

! 5 kg load and female subjects lifted a 8.5 kg load. Each subject performed 10 lifts and 10 lowers 

under both "freestyle" and "constrained" conditions. The load was generally lifted and lowered at a 

greater peak horizontal displacement for the constrained condition than the freestyle condition. 

Subjects tended to have larger peak pelvis and trunk flexion angles, but less peak knee angle for the 

constrained condition than for the freestyle condition. The peak EMG magnitudes for both thoracic 

and lumbar muscle groups also were higher for the constrained than for the freestyle condition. 

The previous study was one of the only studies to look at the effects of a constraining barrier 

on lifting and lowering, even though it has implications to many material handling tasks applied in 

industry This study did not directly calculate the mechanical stresses (i.e.. moments, compressive 

forces) that occurred on the lower back in response to a constraining barrier. Changes in the 

magnitude of back muscle activity (EMG) were used to represent the loading of the back. In addition 

this study compared a single constrained condition (120% of knee height) to the non-constrained 

condition. 

The purpose of this study was to examine the mechanical stresses on the lower back in 

response to the different levels of constraining barrier. Lifting tasks over a non-constraining barrier 

and four different heights of constraining barrier were performed. The heights of the constraining 

barrier were constructed to be 0%. 80%, 100%, 120% and 140% of knee height. 
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Methods 

Subjects 

Ten healthy young male subjects with no history of back injuries participated in this study 

The mean age was 25 - 4.9 years: body mass was 75 ± 8.8 kg: and body height was 1.75 = 0.06 ni. 

The subjects signed informed consent to participate in this study in accordance with university policy 

Prior to the start of the study, subjects were familiarized with the experiment protocol. 

Protocol 

Each subject was asked to lift a load under 5 different conditions. Each condition consisted of 

a series of 10 lifts. The conditions were the non-constrained (as a 'free-normal" lifting) condition and 

the constrained conditions, with 4 different heights of constraining barrier. The constrained condition 

was defined as the condition where the load was placed on the floor behind a certain height of 

constraining barrier. The constraining barrier was a bar that placed between the subject and the load. 

The heights of the constraining barrier were constructed to be 0%. 80%. 100%. 120% and 140% of 

the average male knee height. The knee height was calculated as 28.5% of total body height (Chaffin 

and Andersson. 1999). The order of presentation of these conditions was balanced for each subject. 

During each condition a lift was performed every 6 seconds based on an audible tone. The subjects 

were permitted as much as rest as needed between conditions. 

The load was a crate (42 cm length. 34.5 cm width, 27 cm height) that contained a mass of 

10.3 kg placed on the floor in front of the subject. The crate had two fixed handles placed 

symmetrically 27 cm above the bottom. The handles and mass center of the crate were positioned 

approximately 27 cm horizontally from the subject's ankles. 

Each subject wore shoes during the experiment. The right foot of each subject was placed on 

the force platform during the experiment. Subjects began the lifting experiment from the standing 
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position, then were asked to bend down, grab the crate and returned to a standing position as they 

lifted the crate. The crate was then returned to the original position. Subjects were encouraged to 

perform lifts at a 'normal" speed and use a natural lifting technique. 

Model 

The motions in this study were recorded using four 120 Hz video cameras (Peak Performance 

Technologies. Inc.. Englewood. CO). The three-dimensional positions of nine reflective markers were 

recorded. Reflective markers were placed on the second toe. the posterior point of the heel, the lateral 

malleolus, the midpoint of the lateral joint line of the knee, and the glenohumeral joint. Three 

additional markers were then placed on the pelvis region to help defining the joint between the fifth 

lumbar and first sacral vertebrae (L5/S1 ). (See a detailed explanation of L5/S1 joint definition in 

chapter 31. A final marker was placed on the crate. The marker coordinates were low-pass filtered 

\\ itli a fourth-order (zero lag) Butterwoth filter using a 2 Hz cut-off frequency. 

A strain-gage force platform (Advanced Mechanical Technology. Inc.. Newton. MA model 

OR 6-6 2000) was used to determine the three components of ground reaction forces, the location, 

direction and magnitude of external forces. The force platform signals were sampled at 120 Hz and 

sy nchronized with the kinematic data using the event and video control unit (Peak Performance 

Technologies. Inc.. Englewood. CO). 

The body was modeled with five segment (foot, leg, thigh, pelvis, and a segment of 

head/arms/trunk) with intersegmental joints at the ankle, knee, hip, and L5/S1. Each segment w as 

assumed to have a fixed point mass and constant moment of inertia (See a detailed explanation of 

segment's location of center mass, moment inertia, and segment's mass in chapter 3 ). 

The inverse dynamics of the standard link segment model (Winter. 1990) and Newtonian 

equations of motion starting at the foot were applied to determine the reaction forces and moments at 



www.manaraa.com

71 

the proximal end of each segment. (See a detailed explanation of the compressive forces at L5 SI in 

chapter 3 ). 

Dala analysis 

The independent variable was the barrier height with 5 levels. The main dependent variable 

was the peak compressive forces at the L5/S1 joint. The time of the peak compressive forces was 

observed slightly after the time that subjects lift-off the load. In order to determine the cause of 

differences in the peak compressive forces, several variables were examined at the time of peak 

compressive forces. These v ariables included the horizontal distance between the center of load and 

1.5 S ! joint, the vertical acceleration of the load, the angular acceleration of the trunk, the sacral and 

trunk angles and the postural index. The sacral angle was defined as the angle formed by the base of 

sacrum (Chaffin. et al.. 1999). It was assumed to be 45° during static trial (Thieme. 1950). The 

postural index was defined as the ratio of the knee angle to the sum of hip and L5/SI angles. 

Means and standard deviations were calculated for each condition. Repeated measures 

analysis of variance was performed to detect statistical differences between the conditions. In 

addition, a polynomial regression model of second order was used to analyze the trend in the peak 

compressive forces after adjusting for the unequal intervals between conditions. An alpha level of 

0.05 was selected as the level of statistical significance. 

Results 

There was a statistically significant increased in peak compressive forces at L5/SI (figure I ) 

between the non-constrained and the constrained conditions (p < 0.05). Compared to the 0% barrier 

height the peak compressive forces at L5/S1 were increased by 306.2 N (7.9%), 293.6 N (7.6%). 

267.2 N (6.9%) and 210.6 N (5.4%) for the 80%, 100%, 120% and 140% barrier heights respectively 

(table I ). The analysis of the trend of the peak compressive forces at L5/S1 showed statistically 
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significant quadratic trend (p = 0.0006). However, the magnitude of the difference of the peak 

compressive forces during the constrained conditions was small. The peak compressive forces 

difference between the lowest (80%) and the highest (140%) barrier heights was less than 100 N. 

There were significant kinematic changes that occurred, mostly between the 0% barrier 

height and the other barrier heights (table 1 ). The load was moved further from L5/SI when the 

barrier was introduced. Compared to the 0% barrier height the load was moved further from L5 SI in 

the horizontal direction by 3 cm. 4 cm. 3 cm and 2 cm for the 80%. 100%. 120% and 140% barrier 

heights respectively. 

The forward tilt of the pelvis increased as the barrier height increased. This caused an 

increase in the sacral angle of 3.7 degrees. 5.2 degrees. 5.9 degrees and 8.2 degrees for the 80%. 

100%. 120% and 140% barrier heights respectively (table I). 

There w as a trend to decrease the postural index as the barrier height increased. Compared to  

the 0°o barrier height the postural index decreased by 0.07. 0.09. 0.08 and 0.11 for the 80%. 100%. 

120"u and 140% barrier heights respectively (table 1 ). The decrease in the postural index was mainly 

due to the reduction of the knee angle. 

t he trunk angle, the angular acceleration of the trunk and the vertical acceleration of the load 

showed no statistically significant changes. 

Discussion 

The current study applied a dynamic biomechanical model to estimate the mechanical 

stresses and kinematic changes that occurred as a result of lifting a load over a constraining barrier. 

Peak compressive forces and moments were consistent with previous studies, de Looze et al. ( 1992) 

reported peak moment values at L5/S1 ranged from 220.1 ±25.2 N»m for a 18.8 kg load. In the 

present study, moment values at L5/S1 ranged from 215.9 ± 9.4 N*m while lifting a 10.3 kg load 

during the non-constrained condition. Chen (2000) focused on the peak compressive forces at L5/SI 
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and found that lifting a 10 kg load produced an average value of 3690 ± 410 N for subjects with an 

average mass of 67 kg. The mean peak compressive forces at L5/SI for subjects in the current study 

(average mass: 75 kg) was 3869 ± 528 N while lifting a 10.3 kg load during the non-constrained 

condition. 

Subjects significantly increased peak compressive forces at L5/S1 when they had to lift the 

load ov er a barrier. This was because subjects moved the load further from L5/S1 in the horizontal 

direction when lifting during the constrained conditions. The greater displacement of the load relative 

to lower back generates the larger stresses at the lower back. This result supports the previous study 

( McKean and Potvin. 2001 ). which showed that lifting over the constraining barrier produced larger 

horizontal distances from hands to ankles than lifting under the freestyle (no barrier) condition. The 

larger distance contributes to increased the extensor moment demands and this was confirmed by the 

increased erector spinae muscle activity. 

Increasing barrier height resulted in an increase of the sacral angle and decrease of the 

postural index. The increase in the sacral angle was due to an increase in forward pelvic tilt. The 

decrease in the postural index was mainly due to the reduction in the knee angle. These results agree 

w ith McKean and Potvin (2001 ) who found lifting over the constrained condition significantly 

reduced the amount of flexion at the knees and increased the peak trunk flexion compared to the 

freesty le condition. Potvin et al. ( 1991 ) and McKean and Potvin (2001 ) discovered the main 

contributor to increases in the peak trunk flexion would come from the pelvic flexion. 

There was a significant quadratic trend in the peak compressive forces. Subjects tended to 

produce greater peak compressive forces at L5/S1 when lifting over the constraining barriers, where 

the height w as close to knee height (80% - 100%) compared to the constraining barriers, where the 

height was higher than knee height (120% - 140%) or lower than knee height (0%). This situation 

prevented subjects from bringing the load closer to the body and thus greater peak compressive forces 

were generated in the lower back. In addition, the trajectory of the load needs to be more vertical 
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w hen the load must be lifted over the barrier. When lifting over the higher barrier than knee height, 

subjects increased the forward pelvic tilt and might move the load closer to the body. An increase of 

the forward pelvic tilt means a greater sacral angle. The greater sacral angle does not decrease the 

spinal loading, but it does a shift the loading from compressive to shear. 

Conclusions 

In the current study, when lifting over a constraint barrier, individuals significantly increased 

the peak compressive forces in the lower back. This was because the constrained condition produced 

greater horizontal displacement of the load to the lower back than did the non-constrained. Lifting 

load over a constraint barrier also generated an increase of sacral angle and a decrease of the knee 

flexion. 

The peak compressive forces in the lower back in this study showed a quadratic trend. 

Therefore, individuals tended to produce greater stresses in the lower back while lifting a load over 

constraining barrier where the height was close to knee height compared to a constraining barrier 

where the height was higher or lower than knee height. However, the magnitude of the difference of 

the peak compressive forces was very small. Future research should investigate barrier height 

between 0% and 80% and above 140% of knee height. 

To prevent the risks of the lower back injury, people should avoid lifting load over a barrier if 

possible. This is because the constrained condition significantly generates a larger horizontal 

displacement between the load and the lower back, which will produce greater stresses on the lower 

back. So. when lifting people should keep the load close to the body. Lifting load under the 

constrained condition requires that people use more back than knees. This situation also develops 

more stresses on the lower back. If a barrier is necessary, it my be marginally beneficial to avoid 

barrier heights that restrict knee flexion. 
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Table 5.1: Means and standard deviations of the peak compressive forces at the L5/S1 and other 

variables from all conditions. All variables were measured at the time of the peak compressive 

forces. 

0% 80% 100% 120% 140% Sig. 

Variables Cond 1 Cond 2 Cond 3 Cond 4 Cond 5 

Peak Compressive Forces (N) 3868.8 4175.0 4162.4 4136.0 4079.4 1 vs 2. 3. 4. 5 

± 527.5 ± 486.0 = 462.3 = 553.1 = 468.9 

Horizontal distance between load and L5/S1 (m) 0.75 0.78 0.79 0.78 0.77 1 vs 2. 3. 4. 5 

±0.38 ±0.38 ±0.44 = 0.38 = 0.32 

Load vertical acceleration (m»s'~) 3.4 3.6 3.5 3.7 3.4 none 

±0.9 = 0.7 = 0.5 = 0.9 = 0.6 

Angular acceleration of the trunk (deg's"") 245.7 275.7 274.20 260.9 252.3 none 

= 1 1 1 .6 = 77.2 = 80.9 = 97.4 = 83.8 

Trunk angle (deg) 3.1 0.2 -0.2 1.1 0.5 none 

± 12.3 = 8.5 = 6.0 = 7.6 = 5.7 

Sacral angle (deg) 62.4 66.1 67.6 68.3 70.6 1 vs 2. 3. 5 

= 13.3 = 10.4 ±9.8 = 10.4 = 9.5 5 vs 2. 3 

Knee angle (deg) 54.3 50.9 48.0 48.6 43.9 1 vs 2. 3. 4. 5 

= 8.4 = 6.2 ±5.1 = 5.9 = 4.8 2 vs 5 

Postural Index 0.47 0.40 0.38 0.39 0.36 1 vs 2. 3. 4. 5 

= 0.19 ±0.16 ±0.13 = 0.13 = 0.13 2 vs 5 
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Figure 5.1 : Peak compressive forces at the L5/S1 for all conditions. 



www.manaraa.com

79 

CHAPTER 6: CONCLUSIONS 

Lower back injury is a problem in the human society and manual material handling (MMH). 

especially the manual lifting task, has been thought to be the major cause of this ty pe of injury. 

This research was undertaken to investigate these types of motions. The specific purpose of 

this research was to examine the mechanical stresses at the lower back (the L5/S1 joint) and to 

analy ze how individuals adapted to the stresses during dynamic manual lifting. A biomechanical 

model of lifting was applied to measure the stresses at the lower back and monitor kinematic changes. 

This dissertation contained three studies of lifting with three different aspects that caused the 

mechanical stresses in the lower back. The first study investigated the effects that fatigue had on the 

stresses at the lower back. In this study, subjects performed a continuously lifting task until they were 

fatigued. The magnitude of muscular fatigue was documented by the changes in the median frequency 

and RMS of the electromyography. The rating of perceived exertion (RPE) was also used to monitor 

the overall discomfort during the lifts. The second study explored the effects of knowledge of load 

magnitude on the stresses at the lower back and also analyzed how subjects adapted to the stresses 

during subsequent lifts. In this study, subjects performed lifting tasks of two load magnitudes (light 

and heavy ) and two levels of load knowledge (known and unknown). Each lifting task consisted of a 

series of five lifts. The third study examined the effects of a constraining barrier on the stresses at the 

lower back. In this study, subjects performed lifting tasks over five different heights of constraining 

barrier. The constraining barrier was a bar that was placed between the subject and the load. The 

height of constraining barrier was constructed as a percentage of knee height. 

Research contributions and suggestions 

This research has been undertaken because of the prevalence of lower back injury and the 

relation to lifting activities as the major cause. Three different aspects that influenced the mechanical 
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stresses at the lower back during lifting were analyzed separately in three different studies. A 

biomechanical approach was used to explain the results of these studies. 

Fatigue has been discovered to influence the stresses at the lower back during repetitive 

lifting task. Sparto. et al. (1997) and Adam and Dolan (1998) found that fatigue decreased the stresses 

at the lower back. Chen (2000) found that fatigue increased the compressive forces at the lower back. 

However, the result of this research showed that the peak compressive forces at L5/SI were 

insignificantly different when fatigue was reached. The contribution of this research is to understand 

whs the stresses at the lower back were different when fatigue was reached. This was because each 

individual subject applied different lifting strategies when they were fatigued. Some subjects 

increased and others decreased the peak compressive forces when fatigued. When fatigued, the 

accelerations of load and trunk significantly increased. It is hypothesized that the increased 

accelerations were caused by a shift from the small fatigue resistant motor units used during the 

initiation of lifting to the large, lower precision motor units during fatigue. Increasing the vertical 

acceleration of the load and angular acceleration of the trunk should have increased the peak 

compressive forces at the lower back, however some subjects decreased the peak compressive forces 

during fatigue. This was because subjects that decreased the peak compressive forces showed smaller 

magnitude increases in the load acceleration and trunk acceleration. They also tended to increase the 

sacral angle and maintain posture when fatigued. On the other hand, subjects that increased the peak 

compressive forces shifted toward to a stooped (back) posture when they were fatigue. In order to 

prevent an increase of stresses at lower back as the effects of repeated lifts, it is suggested that people 

should lift with the entire body rather than only specific joints. In addition, people also should 

perform appropriate training exercise of the back to delay the onset of fatigue of the low er back. 

The knowledge of the load magnitude has shown to influence the stresses at the lower back 

during lifting. Individuals lift differently when they know and do not know the magnitude of the load. 

Previous studies (Patterson et al.. 1987, Butler et al., 1993, Commissaris and Toussaint. 1997. de 
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Looze et al.. 2000) have found that the stresses at the lower back significantly increased when 

individuals lift a load under the unknown condition. The result of this research also showed that when 

subjects lifting a light load under the unknown condition, the peak compressive forces at L5 SI 

significantly increased. This was because subjects overestimated the load this produced a rapid 

acceleration, w hich increased the stresses at the lower back. The contribution of this research is the 

prex ions studies have not considered how individuals adapt during subsequent lifts when lifting light 

or heavx loads when the mass is known or unknown. Typically only a single lift is investigated rather 

than a series of lifts. In the current research, subsequent lifts were analyzed to see how subjects adapt 

to lifting a light or a heavy load under the known and unknown conditions. The results showed that 

subjects adapted during subsequent lifts differently depend on the knowledge and magnitude of the 

load. When lifting an unknown load, there were greater adaptations as compared to a known load. 

This was because subjects had no knowledge of the mass during the initial lift of the unknown 

condition. After that, subjects made kinematic and kinetic adaptations during subsequent lifts based 

on the experience of the first lift. In this research, the greatest adaptations occurred between the initial 

lift and the subsequent lifts. When lifting a light load, regardless of the knowledge of the load, 

subjects adapted during the subsequent lifts by reducing the peak compressive forces at the lower 

back. However, when lifting a heavy load regardless of the knowledge of the load, subjects did not 

reduce the stresses at the lower back. They adapted during the subsequent lifts by increasing the use 

of' the legs. In order to reduce the risks of lower back injury due to the misinterpretations of load 

under the unknown condition, it is suggested that subjects be given knowledge of the mass of the load 

being lifted as clearly as possible. Providing a label/mark on the container that displays the mass 

(weight) is a good solution to inform people the magnitude of the load. If an exact amount of mass is 

not available, the approximately masses (range of the masses) of the loads should still be provided, so 

that people can estimate the magnitude of the loads before lifting. 
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Lifting over a constraining barrier has been shown to increase the risk of the lower back 

injur). The previous study (McKean and Potvin. 2001 ) found that when lifting over a constraining 

harrier subjects tended to move the load further from the lower back in the horizontal direction. The) 

also found that subjects required more trunk flexion and knee extension when lifting over the 

constraining barrier. McKean and Potvin (2001) did not estimate the stresses (i.e.. moments, 

compressive forces) at the lower back and only compared lifting tasks between a single constraining 

barrier to the non-constraining barrier. They used the changes of muscle activity (EMG) in the 

thoracic and lumbar regions to represent the spinal loading when lifting over the constraining barrier. 

The contribution of this research was to estimate the peak compressive forces at L5/SI when lifted 

oxer the constrained condition of five different heights of constraining barrier. The results shoxxed 

that xx hen subjects lifting over the constrained conditions, the peak compressive forces in the loxxer 

hack significant!) increased compared to the non-constrained condition. This was because subjects 

moved the load further from the lower back when lifting during the constrained conditions. When 

lifting during the constrained conditions, subjects increased the sacral angle, but decreased the knee 

flexion. In the current research, the peak compressive forces at L5/S1 showed a significant!) 

quadratic trend. Hoxxever. the magnitude of the difference of the peak compressive forces was small. 

In order to prevent the risks of the lower back injury, people should avoid lifting a load over a barrier 

if possible. This is because the constrained condition significantly increases horizontal displacement 

betxxeen the load and the lower back, which will produce greater stresses on the lower back. 

Internal and external environment of variables should be considered when assessing the 

potential risks of back injury. The components that cause changes to the peak compressive forces 

should be analyzed, some components may decrease peak compressive forces but increase other 

loads. Individuals respond to fatigue in different ways. 
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Future studies 

Study of fatigue as the result of different protocols while lifting should be considered as a 

future research, instead of just comparing fatigue conditions, pre and post fatigue conditions for a 

specific protocol. 

The effect of unexpected loads with different masses and how individuals adapt it to the 

subséquent lifts probably could be considered as a future research. 

Future research and more data collection of lifting tasks under different levels of constraining 

barrier are required to emphasize the meaning of the quadratic trend of the peak compressive forces at 

1.5 SI. The data collection of lifting over the constrained condition, where the height of constraining 

harrier is between 20% and 80% or higher than 140% of knee height, is probably interesting for 

future investigation. 
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APPENDIX A: INFORMED CONSENT 

Appendix A contains the information for the Informed Consent to participate in research 

form. There are three different forms of the Informed Consent to participate in research form. The 

loua State University Human Subjects Review Committee prior to the lifting experiments in this 

study approved these forms. The Informed Consent form was reviewed and signed by the subject in 

this study after any questions about the research were addressed prior to the experiments. 
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Informed Consent to Participate in Research 

Department of Industrial and Manufacturing System Engineering 

Iowa State University 

Ames. IA 5001 1 

You are being asked to volunteer as a participant in a research study. This form is designed to provide 

you with information about this study and to answer your questions. 

! Title of Research Study 

Influence of fatigue on L5/S1 Compressive Force During Manual Lifting 

2. Project Directors 

Name: I wan Budihardjo 

Address: 3013 Black Engineering 
Email: ihudihar a iastate.edu 

Name: Tim R Derrick 

Address: 249 Forker Building 

Phone: 294 8438 
Email: iderrick a iastate.edu 

3. Purpose of the Research 

The purpose of this study is to examine the loads on the lower back while subjects lift a crate until 
fatigued. 

4. Procedures for this Research 

Orientation for Lifting Trials 

Prior to the start of the study, there will be an orientation session to familiarize you with the lifting 
motions to be analyzed and the equipment used during the data collection. At this time you will be 

able to ask questions and obtain further information about all aspects of the study. You will be asked 

to perform lifting trials until you feel fatigued. You will be able to use the lifting technique that you 

feel most comfortable with. The object to be lifted is a crate containing 10 kilograms (22 pounds) of 

weights. The motion involves lifting the crate from ground level in front of the body to about the 

knuckle height. The crate will then be returned to the ground and the next lift will be initiated. You 
will perform 10 lifts per minute for up to I hour or until you become fatigued. Every a minutes you 

will be shown a scale that ranges from 0 (no exertion) to 10 (maximal exertion). You will point out 

the number that most closely approximates your state of fatigue. The lifts will be stopped if you reach 
9 or 10 on the scale. 
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Anthropometric Measurements. Marker and Skin Surface Electrode Placements 

During the lifting trials, you will be asked to wear black biking shorts and tank top provided by the 

researchers. This clothing will make it more accurate for the computer to locate your joints. Before 

performing the lifting trials, a set of anthropometric measurements will be taken to determine the size 
and shape of your body segments. These measurements will be taken with a standard scale, a 

measuring tape, and a beam caliper. A set of I-inch diameter reflective balls will be attached to 
highlight anatomical landmarks on your body. These markers will be attached to your skin or clothing 
by wax of double-sided adhesive tape. Pairs of disposable surface electrodes will be attached on 
either side of your spine on the lower back. The electrode sites will be cleansed with alcohol swabs 
before the electrodes are attached. These electrodes will record the muscle activity in the muscles of 

the lower back. 

Data Collection 

During the lifting trials, the markers that have been placed on your body will be tracked by four video 
cameras. An additional conventional video camera will also record you to aid in marker identification 

during data analysis. Your digital image will be stored on the computer and deleted at the conclusion 
of the study. The skin surface electrodes that have been placed on your body will be used to record 

muscle activity so the fatigue can be determined during the lifting trials. You will be standing with 

the right foot on a device that will record the forces while performing the lifting trials. Tracking 
markers by video cameras and force platform measurements are common procedures used in 

biomechanics. The total time for orientation, measurement, and the lifting trial is expected to be about 
two hours. 

5. Potential Risks or Discomforts 

Some minor irritation might occur upon removal of the markers or electrodes. Some muscle soreness 
may result from the repeated lifts. There are no invasive procedures used in this study. 

6. Potential Benefits to you or others 

There w ill be no direct benefits to you as subject in this study. This study may lead to a better method 

of determining joint forces, moments and compressive forces on the lower back during lifting. It may 

also lead to improved strategies to deal with the effects of fatigue while lifting. 

7. Alternate Treatment or Procedures, if applicable 

You cannot participate in this study if you have any history problems with your back. You have the 

option of not participating in the study. You are also free to withdraw from the study at any time 
w ithout consequence. 
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Please circle your answer: 

Do you have any history of back problems? YES NO 

Do you understand that you will not receive money for your participation in this study? YES NO 

Do you understand that you are free to withdraw your consent and discontinue participation in this 

research project at any time without prejudice? YES NO 

Emergency treatment of any injuries that may occur as a direct result of participation in this research 
will be treated at the Iowa State University Student Health Services. Student Services Building, 

and/or referred to Mary Greely Medical center or another physician. Compensation for treatment of 

any injuries that may occur as a direct result of participation in this research may or may not be paid 
by Iowa State University depending on the Iowa Tort Claims Act. Claims for compensation will be 

handled by the Iowa State University Vice president for Business and Finance. 

Your questions on any aspect of this research project are welcomed. At the conclusion of this study 

you may request a summary of the results. Your individual results will be kept confidential and 

should the data be used in a publication of the results, your name or any identifying characteristics 
w ill not be reported. 

Signatures 

1 ha\e fully explained to — 

the nature and purpose of the above study and the benefits and risks that are involved in 

participation of the study. I have answered and will answer all questions to the best of my ability. 

Signature of Principal Date 
Investigator Obtaining Consent 

1 have been fully informed of the above-described procedure with its possible benefits and risks and I 

have received a copy of this description. I have given permission for my participation in this study. 

Signature of Participant Date 

Signature of Witness Date 
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Informed Consent to Participate in Research 

Department of Industrial and Manufacturing System Engineering 

Iowa State University 

Ames. IA 50011 

You are being asked to volunteer as a participant in a research study. This form is designed to provide 

vou w ith information about this study and to answer your questions. 

I. Title of Research Stud) 

Influence of the know ledge of load magnitude on L5/S1 compressive force during manual lifting 

2. Project Directors 

Name: I wan Budihardjo Name: Tim R Derrick 

Address: 3013 Black Engineering Address: 249 Forker Building 
Email: ibudihartir iastate.edu Phone: 294 8438 

Email: tderrick à iastate.edu 

3. Purpose of the Research 

The purpose of this study is to examine how subjects adapt to the loads on the lower back w hile the) 

lift boxes w ith and w ithout knowledge of load magnitude. 

4. Procedures for this Research 

Orientation for Lifting Trials 

Prior to the start of the study, there will be an orientation session to familiarize you with the lifting 

motions to be analyzed and the equipment used during the data collection. At this time you will be 

able to ask questions and obtain further information about all aspects of the study. You w ill be asked 

to perform 8-9 series of 5 lifting trials. The mass of the load will be either low (3 kg, 6.6 pounds) or 

high ( 17 kg, 37.4 pounds). Sometimes you will be told which mass you are lifting and sometimes you 
will not. During each series of lifts you will initiate a lift every 6 seconds. You will be able to use the 

lifting technique that you feel most comfortable with. The motion involves lifting the box from 

ground level in front of the body to about the knuckle height. The box will then be returned to the 
ground and the next lift will be initiated. You can have as much rest between each series of lifts as 
needed to recover. 
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Anthropometric Measurements and Marker Placements 

During the lifting trials, you will be asked to wear black biking shorts and tank top provided by the 

researchers. This clothing will make it more accurate for the computer to locate your joints. Before 
performing the lifting trials, a set of anthropometric measurements will be taken to determine the size 

and shape of your body segments. These measurements will be taken with a standard scale, a 
measuring tape, and a beam caliper. A set of I-inch diameter reflective balls will be attached to 
highlight anatomical landmarks on your body. These markers will be attached to your skin or clothing 
by way of double-sided adhesive tape. 

Data Collection 

During the lifting trials, the markers that have been placed on your body will be tracked by four video 

cameras. An additional conventional video camera will also record you to aid in marker identification 

during data analysis. Your digital image will be stored on the computer and deleted at the conclusion 

of the study. You will be standing with the right foot on a device that will record the forces while 
performing the lifting trials. Tracking markers by video cameras and force platform measurements are 
common procedures used in biomechanics. The total time for orientation, measurement, and the 
lifting trial is expected to be about two hours. 

5. Potential Risks or Discomforts 

Some minor irritation might occur upon removal of the markers. Some muscle soreness may result 
from the repeated lifts. There are no invasive procedures used in this study. 

6. Potential Benefits to you or others 

There w ill be no direct benefits to you as subject in this study. This study may lead to a better method 

of determining joint forces, moments and compressive forces on the lower back during lifting. It may 

also lead to improve lifting strategies. 

7. Alternate Treatment or Procedures, if applicable 

You cannot participate in this study if you have any history problems with your back. You have the 

option of not participating in the study. You are also free to withdraw from the study at any time 

w ithout consequence. 

Please circle your answer: 

Do you have any history of back problems? YES NO 

Do you understand that you will not receive money for your participation in this study? YES NO 



www.manaraa.com

90 

Do you understand that you are free to withdraw your consent and discontinue participation in this 

research project at any time without prejudice? YES NO 

Emergency treatment of any injuries that may occur as a direct result of participation in this research 

is available at the Iowa State University Thomas B. Thielen Student Health Center, and/or referred to 

Mars Greeley Medical Center or another physician or medical facility at the location of the research 
actix ity. Compensation for any injuries will be paid if it is determined under the Iowa Tort Claims 

Act. Chapter 669 Iowa Code. Claims for compensation should be submitted on approved forms to the 
State Appeals Board and are available from the Iowa State University Office of Risk Management 

and Insurance. 

Your questions on any aspect of this research project are welcomed. At the conclusion of this study 

you may request a summary of the results. Your individual results will be kept confidential and 

should the data be used in a publication of the results, your name or any identifying characteristics 

u ill not be reported. 

Signatures 

I have fully explained to 
the nature and purpose of the above study and the benefits and risks that are involved in 

participation of the study. I have answered and will answer all questions to the best of my ability. 

Signature of Principal Date 
Investigator Obtaining Consent 

I have been fully informed of the above-described procedure with its possible benefits and risks and I 

have received a copy of this description. I have given permission for my participation in this study. 

Signature of Participant Date 

Signature of Witness Date 
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Informed Consent to Participate in Research 

Department of Industrial and Manufacturing System Engineering 

Iowa State University 

Ames. IA 50011 

You are being asked to volunteer as a participant in a research study. This form is designed to provide 

\ou with information about this study and to answer your questions. 

1. Title of Research Study 

The influence of barrier height on L5/S1 compressive force during manual lifting 

2. Project Directors 

Name: I wan Budihardjo Name: Tim R Derrick 
Address: 3013 Black Engineering Address: 249 Forker Building 
Email: ibudihar a iastate.edu Phone: 294 8438 

Email: tiierrick a ia.statc.cdu 

3. Purpose of the Research 

The purpose of this study is to examine how subjects adapt to lifting a load over barriers of various 
heights. 

4. Procedures for this Research 

Orientation for Lifting Trials 

Prior to the start of the study, there will be an orientation session to familiarize you w ith the lifting 

motions to be analyzed and the equipment used during the data collection. At this time you will be 

able to ask questions and obtain further information about all aspects of the study. You w ill be able to 

use the lifting technique that you feel most comfortable with. The object to be lifted is a crate 
containing 10.3 kilograms (22 pounds) of weights. A simulated barrier with different heights w ill be 
placed between you and the crate. There are 5 lifting conditions that represent the heights of the 
barrier. They are 0% (no barrier), 80%, 100%. 120% and 140% of knee height as the height of barrier 
conditions. The motion involves lifting the crate from ground level in front of the body to a shelf at 

knuckle height. The crate will then be returned to the ground and the next lift will be initiated. You 

will perform 10 lifts during a one minute interval for each condition. The lifting trials will be assigned 
randomly for each subject. 
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Anthropometric Measurements and Marker Placement 

During the lifting trials, you will be asked to wear black biking shorts and tank top provided b> the 
researchers. This clothing will make it more accurate for the computer to locate xour joints. Before 

performing the lifting trials, a set of anthropometric measurements will be taken to determine the size 
and shape of your body segments. These measurements will be taken with a standard scale, a 
measuring tape, and a beam caliper. A set of 1-inch diameter reflective balls will be attached to 

highlight anatomical landmarks on your body. These markers will be attached to your skin or clothing 

bx wax of double-sided adhesive tape. 

Data Collection 

During the lifting trials, the markers that have been placed on your body will be tracked by four video 

cameras. An additional conventional video camera will also record you to aid in marker identification 
during data analysis. A digital image of the reflective markers will be stored on the computer and 

deleted at the conclusion of the study. You will be standing with the right foot on a device that w ill 

record the forces while performing the lifting trials. Tracking markers by video cameras and force 

platform measurements are common procedures used in biomechanics. The total time for orientation, 

measurement, and the lifting trial is expected to be less than two hours. 

5. Potential Risks or Discomforts 

Some minor irritation might occur upon removal of the markers. Some muscle soreness max result 
from the repeated lifts. 

b. Potential Benefits to you or others 

There xvill be no direct benefits to you as subject in this study. This study may lead to a better method 
of determining joint forces, moments and compressive forces on the lower back during lifting. It max 
also lead to improved strategies to deal with the effects of different heights of simulated barrier while 
lifting. 

7. Alternate Treatment or Procedures, if applicable 

You cannot participate in this study if you have any history problems with your back. You have the 

option of not participating in the study. You are also free to withdraw from the studx at anx time 
without consequence. 

Please circle your answer: 

Do you have any history of back problems? YES NO 

Do you understand that you will not receive money for your participation in this study? YES NO 
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Do \ou understand that you are free to withdraw your consent and discontinue participation in this 

research project at any time without prejudice? YES NO 

Emergency treatment of any injuries that may occur as a direct result of participation in this research 

is available at the Iowa State University Thomas B. Thielen Student Health Center, and/or referred to 
Marx Greeley Medical Center or another physician or medical facility at the location of the research 
activity. Compensation for any injuries will be paid if it is determined under the Iowa Tort Claims 
Act. Chapter 669 Iowa Code. Claims for compensation should be submitted on approved forms to the 
State Appeals Board and are available from the Iowa State University Office of Risk Management 

and Insurance. 

Your questions on any aspect of this research project are welcomed. At the conclusion of this studs 

>ou nun request a summary of the results. Your individual results will be kept confidential and 

should the data be used in a publication of the results, your name or any identifying characteristics 
will not be reported. 

Signatures 

I ha\e fully explained to — 

the nature and purpose of the above study and the benefits and risks that are involved in 

participation of the study. I have answered and will answer all questions to the best of my ability. 

Signature of Principal Date 
Investigator Obtaining Consent 

I have been fully informed of the above-described procedure with its possible benefits and risks and 

have received a copy of this description. I have given permission for my participation in this study. 

Signature of Participant Date 

Signature of Witness Date 



www.manaraa.com

94 

APPENDIX B: ANTHROPOMETRIC TABLE 

Adjusted Body Segment Parameter Data for males (Zatsiorsky et al. 1990. adjusted by de Leva, 

personal communication. April 14. 1995) 

Segment Proximal Distal Relative Mass CM Location Radius of gyration 

Reference Reference (from proximal (ML direction) 

Reference) 

Foot heel toe 0.0137 0.4415 0.257 

Shank/leg knee joint ankle joint 0.0433 0.4459 0.255 

center center 

Thigh hip joint knee joint 0.1416 0.4095 0.329 

center center 
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APPENDIX C: THE L5/S1 AND PELVIS MODELS 

Calculation of the L5/S1 global coordinates 

The three-dimensional L5/S1 global coordinate when subject was in dynamic trials (PG) was 

obtained b> using the transformation matrix (T) from the local coordinate frame L. to the global 

coordinate frame G. as follow: 

Pc = Lc + [R] PL 

= [T]Pl 

The transformation is given in terms of the vector Lq, which represents the location of the 

origin of the local frame relative to the global one, and the matrix [R], representing the orientation of 

the local frame. And. by using a (4 3 4)-transformation matrix [T], translation and rotation can be 

simultaneously represented by one matrix multiplication, as follows: 

[T] = 1:000 

[L] : [R] 

The elements of the matrix [Lg], the location of the origin of the local frame relative to the 

global were the three-dimensional orientation of the hip joint center. And, the elements of the matrix 

[R] were three vector columns that represented by the three-dimensional unit vector orientations of 

the three markers in the pelvis segment. 

R.xi R.X2 R.X3 

RYI RY2 R-Y3 

Rzi RZ2 RZ3 

The first column of matrix [R] was the three-dimensional unit vector from hip to sacrum 

orientations. Then, the second column of matrix [R] was the three-dimensional unit vector of the 

[ U ]  =  
Lx 

Ly 
Lz 
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cross product between the vector from hip to iliac crest orientations and the unit vector of the first 

column of matrix [R], And finally, the third column of matrix [R] was the three-dimensional unit 

vector of the cross product between the vector from hip to sacrum orientation and the unit vector ot 

the second column of matrix [R], 

Matrix [PL] was the three-dimensional L5/SI local coordinate when the subject was in 

standing erect. This local coordinate was obtained by using the inverse transform matrix formula from 

the global system to the local one. when the subject was in standing erect position: 

PL = (transpose [R]) (PG - Lc) 

PL = (inverse[T]) PG 

The inverse of transformation matrix [T] is 

1 : 0 0 0 

- trans[R] [L] trans[R] 

The element of matrix [PG] was the three-dimensional L5/S1 joint orientation coordinate 

when the subject was standing erect (19.5% from hip between hip and shoulder joint centers). The 

elements of matrix [Lc] and [R] were the same as described above. 

The three-dimensional L5/S1 local coordinates when subject was standing erect were stored 

as subject's L5/SI local coordinates. It was used by the transformation matrix formula to obtain the 

three-dimensional L5/S1 global coordinate (PG) when subject was in dynamic trials. 

Elliptical solid 

To obtain the center of mass (CM) of pelvis in longitudinal position (Z) relative to the pelvis 

length (L). the following calculation is required: 

Z = [(G2I(A, B)/G20(A. B)) L]/L, 
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Which G :i (A. B) and G2o(A, B) are the functions that derived from anthropometric measurements. 

The CM of pelvis is relative to the pelvis length to the hip joint center as the proximal point. 

The moment of inertia of pelvis to the center of mass on the ML axis. IYv. is obtained by: 

Iyy = Iy * Z". 

Which Z is the CM of pelvis in longitudinal position, and IY is the moment of inertia of pelvis to the 

proximal point on the ML axis. Iv is obtained by: 

H = (1174) p L Gjo( A. A. A. B) ~ n p (Laj) G22( A. B). 

Which G4,i( A. A. A. B) and G22(A. B) are the functions that derived from anthropometric 

measurements, p is uniform density of pelvis (Pearsall. et al.. 1996). 

G;, (A. B). G:, (A. B). G22(A. B). and G40(A. A. A. B) are the functions that derived from the 

anthropometric measurements, the radius of the hip and L5/S in medial lateral (ML) and anterior 

posterior (AP) directions. 

G]o(A. B) = F22(A. B)/3 + F2,(A. B)/2 + F20(A. B). 

G]|(A. B) = F22( A. B)/4 + F2|( A. B)/j + F2o( A. B)/2. 

G;:(A. B) = F22(A. B)/5 - F2,(A. B)/4 + F:o(A. B)/3. 

G. ( A. A. A. B) = F44( A. A. A. B)/5 + F43(A. A. A.B)/4 + F42(A. A. A. B)/3 + F4,(A. A. A. B)/2 -

F4o( A, A. A, B). 

F2i)(A. B) = AoBo 

F:i(A. B) = Ao(B| - Bo) + (A| — Ao)Bo 

F::(A. B) = (A, - A<j)(B| - Bo) 

F4O(A. A. A. B) = AqAQAOBQ. 

F4i(A. A. A, B) = (A| — Aq) AoAoBo + Ao(Ai — Ao) AqBq + AqAo(A| — Ao)Bo ^ AqAoAo(B i — B,,). 

F42(A. A. A. B) = A0A0(A| — Ao)(B| — Bo) + Ao(A| — Aq)Aq(B| — Bo) + Ao(A, — A<j)(A| — Ao)Bo ~ 

(Ai — A(j)A0Ao(B| — Bo) + (A| — Ao)Ao(Ai — Ao)Bo + (A| — Ao)(A| — Ao)AqBo 
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F ;;( A. A. A. B) = Ai)(Ai — Ao)(A| — Ao)(B| — Bo) + (A; — Ao)Ao(A| — Ao)(B| — Bu) ~ ( Ai — A,,)( A; -

A. )A,.(B] — Bij) ~ (Ai — Aii)(A| — Ao)(Ai — Ao)Bo-

F 44I A. A. A. B ) = ( A1 — Ai,)(A| — A„)( A; — Ao)(B1 — Bo). 

Where A. is the radius of L5/S1 in AP direction. A0 is the radius of hip in AP direction. B, is the 

radius of L5 SI in ML direction, and B0 is the radius of hip in ML direction. 
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APPENDIX D: MOTOR UNIT AND MUSCLE FIBER TYPES 

The motor neuron is the functional unit of the nervous system carrying information to and 

from the nervous system. A motor unit is composed of a motor neuron and all of the muscle fibers it 

innorxates. It is the smallest functional unit of muscular shortening or force production. Each muscle 

has manx motor units. The number of fibers in a motor unit is dependent on the precision of 

moxement required of that muscle. The average number of fibers per neuron is somexxhere between 

100 and 200 muscle fibers (Enoka. 1988. Basmajian. 1978). 

There are three different types of motor units, corresponding to the three fiber tx pes: sloxx-

nxitch oxidatixe (txpe I), fast-twitch oxidative (type lia), and fast-twitch glycolytic (type lib). All of 

the muscle fibers in a motor unit are of the same type. Within a muscle there is a mixture of fiber 

tx pes. These fibers and motor unit types are basically genetically determined, but they max change 

nil training. The fiber type characteristics are as follows: 

Sloxx-txvitch oxidative 

It i> small size and sloxv shortening speed, so the force production is loxx. It is loxv in anaerobic 

capacity but xerx high in aerobic capacity and then low fatigability (fatigue resistant). 

Fast-txx itch oxidative 

It is large size and fast shortening speed, then the force production is high. The capacities of aerobic 

and anaerobic are medium, so this type is medium resistant of fatigue. 

Fast-twitch glycolytic 

It is the largest size and fastest speed, and the highest in force production. The anaerobic capacity is 

very high, but the aerobic is very low. so this type is high fatigability (non-fatigue resistant). 

The excitation of a motor unit is an all-or-nothing principle. To increase tension can be 

accomplished by: 

- Increasing the number of stimulated motor units (recruitment) 
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Each motor unit has a stimulation threshold at which it will begin to produce force. Small motor units 

have a lower threshold than large motor unit, therefore they are recruited first (size principle). 

Recruitment is ordered: type I recruited first (lowest threshold), then type lia recruited second, and 

type lib recruited last (highest threshold). 

- Increasing the stimulation rate of the active motor units (rate coding). 

Rate of coding or frequency of coding is the frequency of motor unit firing that influence the amount 

of force or tension developed by the muscle. The rate of coding also varies with the fiber type and 

change with the type of movement. In small muscle types, all of the motor units are usually recruited 

and activated when the external force of the muscle is at levels of 30-50% of the maximum voluntary 

contraction level (Enoka. 1988). In the large muscle types, there is recruitment of motor units all 

through the total force range so that muscles are still recruiting more motor units at 100% maximum 

\oluntar\ contraction (Enoka. 1988). 
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